nature climate change

Article

https://doi.org/10.1038/s41558-025-02408-9

Rising cost of disturbances for forestryin
Europe under climate change

Received: 14 January 2025

Accepted: 22 July 2025

Published online: 18 September 2025

Johannes S. Mohr®"°
Werner Rammer®', Cornelius Senf®®, Dominik Thom ® 47 & Rupert Seidl ® 2

, Félix Bastit>°, Marc Griinig®"?, Thomas Knoke ®*,

% Check for updates

Climate change has large economic costs for society. Animportant
effectis the disruption of natural resource supply by climate-mediated

disturbances such as wildfires, pest outbreaks and storms. Here we show
that disturbance-induced losses for Europe’s timber-based forestry could
increase from the current €115 billion to €247 billion under severe climate
change. This would diminish the timber value of Europe’s forests by up to
42% and reduce the current gross value added of the forestry sector by up
to15%. Central Europe emerges as a continental hotspot of disturbance
costs, with projected future costs of up to €19,885 per hectare. Simultaneous
climate-related increases in forest productivity could offset future
economic losses from disturbances in Northern and Central Europe but not
inSouthern Europe. We find high disturbance-related cost of unmitigated
warming, highlighting that climate change adaptationin forestry is not only
anecological but also an economicimperative.

Climate change has strong impacts on global ecosystems'?. These
impactsarelikely to resultin high economic costs for society’. Recent
studies estimated economic losses related to climate impacts on global
ecosystems to several trillion dollars*, withincome reductions of 19%’,
several hundred billions of dollars needed to compensate for loss and
damage®, and reductions in the gross domestic product of 1.2% per
1°C increase in global mean temperature’. In particular, the already
observed®and projected future’ " increasesin frequency and intensity
of extreme events, suchas droughts, wildfires and floods, have severe
consequences for the global economy**,

Forest ecosystems are particularly prone to climatic extremes
because trees are sessile and long lived™". As forest products are cen-
tral to abio-based economy” ™, changing extreme events pose a major
challenge for awider use of bio-based materials. Amajor concernin this
regard are forest disturbances, that is, large-scale pulses of tree mortal-
ity from wildfires, pest outbreaks and storms'®". Forest disturbances

have increased in frequency and severity in many parts of the globe
inrecent decades*** and are expected to further increase under con-
tinued climate change®. A hotspot of changing forest disturbances is
Europe, where disturbance rates doubledinless than 20 years for major
disturbance agents*, and amassive recent pulse of tree mortality was
unprecedentedin atleast170 years®. Societies in Europe are strongly
dependent onforests for providing jobs, supporting rurallivelihoods,
and contributing to environmental and economic well-being?. Yet, the
continental-scale economicimpacts of climate-mediated disturbances
remain unclear so far.

Understanding the economic impacts of disturbances is com-
plex, as interactions with other climate-induced changes have to be
considered. For instance, climate change affects forest productivity,
with decreases projected for water-limited regions® but broad-scale
increases expected due to CO, fertilization** and an extension of the
growing season particularly in boreal and mountain ecosystems®%°,
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Changing forest productivity interacts with disturbance costs: increas-
ing productivity increases the growing stock, which in turn enhances
the timber value of forests. Simultaneously, productivity-related
increases in harvest levels lead to higher returns that might partly or
completely offset the economic costs of increasing disturbances®®".
These interactions require a joint evaluation of the economic conse-
quences of changing disturbance and productivity®®?'.

Here we present an estimate of the current and future economic
costs of forest disturbances at continental scale, accounting for
climate-mediated changes in both forest productivity and disturbance
in Europe. Specifically, we investigated the historical costs of distur-
bance onthe timber-based forest value (under the climate conditions
of the reference period 1981-2005) and how they are likely to evolve
under scenarios of future climate change (representing the climate
conditions expected for the period 2076-2100). We assessed hotspots
of economic disturbance impact in Europe and whether increasing
forest productivity can offset economiclosses from disturbance under
climate change.

To address our questions, we coupled three crucial elements, (1)
spatially explicit (16 x16 km) forest growth simulations at the level of
individual tree species, (2) >150,000 Monte Carlo simulations of forest
disturbancesinformed by latest remote sensing data and (3) economic
models to quantify the costs of changing productivity and disturbance
across continental Europe focusing on the commercially most relevant
species (atotal of 91 million ha, or two-thirds of Europe’s forest area).
Wesstudied atotal of 1,536 scenarios under three different representa-
tive concentration pathway (RCP) scenario families and quantified
the cost of disturbance by comparing scenario simulations to the
counterfactual of simulations without disturbance under the same
climate conditions. Economic effects were quantified by converting
simulated time series of planned (that is, business-as-usual manage-
ment) and unplanned (that s, disturbance-related) timber harvests to
economic cashflow, which was subsequently discounted and summed
to obtain forest value (Extended Data Fig.1). We translated the present
value of total disturbance costs into annual costs by multiplying with
adiscount rate of 1.5%. Disturbances are discrete events in space and
time, and averaging over extended spatiotemporal scales masks their
immediate local effects?. Hence, we report costs for both the average
(meanacross all stochastic simulations) and the extreme case (defined
astheaverage of the worst 5% of simulations, conditional value at risk),
with the latter being particularly informative for planning under the
precautionary principle®.

Climate change doubles the costs of natural
disturbances

Under historical conditions (1981-2005), the economic costs of natu-
ral disturbances in Europe (loss of forest values) were €115 + 3 billion
(mean ts.d., Fig. 1), with an average annual cost of €1,729 + 48 mil-
lion yr'and anaverage cost per unit area of €1,265 + 35 ha™. These costs
were the result of on average 74.5 million m® of timber disturbed per
year (Table 1). Disturbances reduced the total forest value of Europe
by 28.6 + 0.7% compared with the counterfactual of no disturbance.
Under climate change, total future timber harvestincreased by 17.1%,
from 259.6 to 304.1 million m®yr™ (for the period 2076-2100) under
scenario RCP4.5 (increases of 12.9% and 28.0% under RCP2.6 and
RCP8.5, respectively), resulting from both increasing productivity
(increasing planned harvest) and increasing disturbance (increas-
ing unplanned harvest; Table 1). Distinct increases in unplanned, that
is, disturbance-induced, harvests increased costs of disturbance to
€186 + 8 billionunder RCP4.5, and up to €247 + 15 billion under RCP8.5
(RCP2.6: €146 + 3 billion). Thisreduced the potential forest value rela-
tive to the counterfactual of no disturbance by up to 42.1 +2.5%, and
translated to average annual costs of €2,783 + 116 million yr ' under
RCP4.5 (RCP2.6: €2,191 + 42 million yr™; RCP8.5: €3,711 + 218 mil-
lionyr™), and average costs per unit area of €2,037 + 85 ha' (RCP2.6:
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Fig.1| The current and future cost of natural disturbances in Europe’s forests.
Bars show the timber-based forest value losses from disturbances relative to

the counterfactual of undisturbed forest development under the same climate
scenario. Data denote mean * s.d. across all simulations (N =300). ‘Historical’
assumes climate conditions from 1981-2005, while RCP scenarios are for
projected future climate conditions for the period 2076-2100.

€1,603 +31ha';RCP8.5:€2,715 + 160 ha™). Simulatingamoderate short-
ening of the rotation period by 10 years as ameasure to adapt to chang-
ing climate and disturbance regimes reduced the cost of disturbance
by up to €10 billion under scenario RCP8.5 (Extended Data Fig. 2). All
economic results were sensitive to varying discount rates, with higher
costs of disturbance at lower discount rates (Extended Data Fig. 3). Dif-
ferent climate model projections within the same RCP family resulted
insimilar trajectories (Extended Data Fig. 3).

Central Europe as hotspot of future disturbance
costs

The economic costs of natural disturbances varied widely across Europe
(Fig. 2 and Extended Data Table 1). Hotspots of future disturbance
costs were mainly located in Central Europe (especially in parts of
Germany, Austria, Switzerland and the Czech Republic; Fig. 2c), where
disturbances lowered the economic value of forests on average by
€3,233 ha™ under moderate climate change (RCP4.5),and €2,460 ha™
and €4,375 ha™ under mild (RCP2.6) and severe (RCP8.5) climate change,
respectively (Fig. 2a). Extreme costs in this region (that is, the aver-
age of the economically worst 5% of simulations, conditional value
atrisk) were €17,067 ha*under RCP4.5 (€13,932 ha*and €19,885 ha™
under RCP2.6 and RCP8.5, respectively). In contrast to the high dis-
turbance costs in Central Europe, forests in Northern Europe had
60-65% lower economic costs of disturbance, with average losses of
€1,164 ha*under RCP4.5 (€966 ha™and €1,523 haunder RCP2.6 and
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Table 1| Planned and unplanned timber harvests under climate change

Climate scenario Annual timber volume harvested (million m®) Share of unplanned Productivity relative
Total Planned Unplanned harvests (%) to historical (%)

Historical 259.6+9.4 185185 74.5+27 28711 10079

RCP2.6 2931+9.9 205.1+9.3 88.0+4.2 30.0+1.4 12+77

RCP4.5 304.1£15.6 200.3+11.9 103.8+8.5 341+2.8 17+3.5

RCP8.5 332.3+24.0 202.7+16.9 129.6+13.2 39.0+4.0 127+£2.3

Unplanned harvest is the amount of timber accruing from natural disturbances, while planned harvest is the timber extracted by regular forest management. Values indicate mean+s.d.
Productivity refers to potential net primary productivity (compare Supplementary Methods section ‘Forest productivity under climate change’) in percent of the historical climate scenario.
Historical assumes climate conditions from 1981-2005, while RCP scenarios are simulated under the climate conditions expected for the period 2076-2100.

a Disturbance costs b
RCP4.5 - Average (€ha™) RCP4.5 - Extreme
65° N | 65° N | -
20,000
60°N — 60° N -
15,000
55°N 55°N
50°N | 10,000 50° N -
45° N 45° N |
5,000 2
40° N + 40° N | /|
35°N - 35N
0
S ﬂ S
T [l _ b= N e
© ©
o~ N
o o
e e
_h'r AT T e e
0 ]
< <
o o
9] 9]
[+4 (4
| »
o @
S S
x NJCW |CE ' SW SE 3
— T T T T T
0 5000 10,000 15,000 20,000 0 5000 10,000 15,000 20,000

Average disturbance costs (€ ha™)

Fig.2|Hotspots of future disturbance costs in Europe’s forests. The colour of
each point represents the cost per hectare of forest within a16 x 16 km cell, and
the size of each point corresponds to the forested area within that cell.

a, Average disturbance costs across all simulations. b, Extreme costs, expressed
as the mean over the 5% scenarios with the highest costs. Histograms illustrate
the distribution of disturbance costs across all scenarios, with the values for
RCP4.5 corresponding to the data shown in the maps. Vertical lines within each

Extreme disturbance costs (€ ha™)

histogram indicate average disturbance costs. Only cells with a forest cover of at
least 5% are displayed. ¢, Map showing the European regions considered in this
study: Northern Europe (N), Central-Western Europe (CW), Central-Eastern
Europe (CE), South-Western Europe (SW) and South-Eastern Europe (SE). All
maps use the ETRS89-LAEA Europe projection (EPSG:3035). See Extended Data
Fig. 4 for maps assuming other climate scenarios. Credit: shape file by

Andy South.

RCP8.5, respectively). Nonetheless, local extremes were also high in
NorthernEurope, exceeding €10,000 ha™ (RCP2.6:€9,747 ha™, RCP4.5:
€12,370 ha™', RCP8.5: €14,664 ha, Extended Data Table 1). Generally,
the continental-scale differences in disturbance costs decreased when
considering extreme values (Fig. 2). Disturbance costs in Southern
Europe (Fig. 2c) were between those in Northern and Central Europe
(Extended Data Table1).

Productivity gains offset disturbance losses

Theincreasein forest productivity under climate change (Table 1) over-
compensated the economiclosses from disturbances in Europe overall,
but regional variation was high. The productivity-related increase in

forest value can be attributed to two effects: higher initial growing
stocks and increased sustainable harvest levels from elevated tree
growth (Extended Data Fig. 5). These effects were strongest under
scenario RCP8.5, yetin this scenario, disturbance-induced losses also
increased most strongly (Fig.3a). The economic effects of productivity
and disturbance increased at similar rates across climate scenarios,
resulting in little variation in overall forest value with climate change
(RCP2.6:€337.9 +12.6 billion, RCP4.5: €328.6 + 20.8 billion, RCP8.5:
€340.8 £ 34.9billion). However, scenario uncertainty was lowest under
RCP2.6 and increased considerably withincreasing severity of climate
change (Fig. 3b). Productivity-related offsets of disturbance losses
varied distinctly across Europe. In Northern Europe, economic gains
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Fig. 3 | Effects of changing forest productivity and disturbance on forest
valueinEurope. a,c, Changes in forest value at the continental (a) and regional
(c) scale under future climate compared to historical values. Historical assumes
climate conditions from 1981-2005, while RCP scenarios are simulated under
the climate conditions projected for the period 2076-2100. Blue bars represent
losses due to increasing disturbances, green bars show gains fromincreasing
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productivity. Dots indicate the net change in forest value compared to historical
values. b,d, Continental (b) and regional (d) forest values under different climate
scenarios. Inall panels, data show the mean + s.d. across all simulations in the
respective stratum. Regions were defined as in Fig. 2c. Icons in aadapted from
OpenMoji (https://openmoji.org/) under a CC-BY-SA 4.0 licence.

fromincreasing productivity clearly outweighed disturbance-mediated
losses under climate change (Fig. 3c,d). In contrast, productivity stag-
nated or declined in Southern Europe while disturbances increased,
resulting in decreasing net forest values under climate change. In
Central Europe, productivity was projected toincrease, albeit atalower
ratethaninNorthern Europe. Here, economiclosses from disturbances
are compensated by gains in productivity, yet the offset capacity
decreases with increasing severity of climate change (Fig. 3c,d). Only
under the mild climate scenario RCP2.6 was the forest value of all Euro-
peanregions (and 92% of all European countries, Extended DataFig. 6)
projected toincreaserelativeto historical levels, when considering the
net effects of both changing productivity and disturbance.

Discussion and conclusions

Here we provide a continental-scale estimate of forest disturbance costs
for Europe. Our findings suggest that disturbance costs could more
than double under climate change. Under severe climate change, the
annual losses estimated here correspond to up to 15% of the current
gross value added of the forestry sector in Europe*. We furthermore
highlight considerable differences in the economic costs of forest
disturbances throughout Europe, identifying particular hotspotsin
Central Europe. Local-scale studies from this region show that dis-
turbance costs could be even higher than estimated here, when only
considering disturbance impacts on the economically most valuable
tree species®. Nonetheless, our results of disturbance-based losses on

thetimber-based forest value of up to €19,885 ha' suggest that distur-
bances could posit major economic challenges for timber-based for-
estryinthefuture. Ourresultsalsoindicate that simultaneousincreases
in forest productivity under climate change could offset economic
losses fromincreasing disturbances. The finding that Northern Europe
isthe mainbeneficiary of climate change, withincreasing forest values
in Europe’s boreal zone, is in agreement with previous studies on the
economic effects of climate change®. In contrast, the timber-based
forest value in Southern Europe is already considerably lower than in
other parts of the continent®* and will decrease further under climate
change. The negative impacts of climate change on Southern Europe
identified here correspond well with previous assessments”**3*,
Important limitations need to be considered when interpreting
our results. First, our estimates of the cost of disturbances are likely
conservative, because we only focused on timber-related forest val-
ues. Although timber remains the main marketable good from forests
throughout Europe, disturbances have broad impacts beyond timber®,
and thesocietal costs of disturbance impacts on non-marketable eco-
system services were not considered here. Similarly, we focused on the
economically mostimportant tree species and did not study the effect
of tree species change in response to changing climatic conditions.
More broadly, the consideration of alternative silvicultural strategies
was beyond the scope of our analysis. Rather, we assumed even-aged
management as the most widely used silvicultural strategy across the
continent*?**” and considered local differences in productivity and
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their effect on rotation periods. While this approach is not able to
capture the full variability of forest management regimes applied in
Europe®**¢, it approximates the dominant management of the simu-
lated tree species well***, and provides a robust and consistent baseline
for quantifying continental-scale disturbance costs. We also omitted
income from thinning, likely underestimating Europe’s forest value.
However, previous studies showed that considering thinnings does
not substantially reduce disturbance costs™. The increasing volatility
resulting from disturbances may also drive risk-averse forest owners
to exit the market®, which can have considerable economic effects
beyond the ones considered here. Moreover, we only incorporated
the three mostimportant forest disturbance agentsin Europe, namely,
wildfires, windstorms and bark beetle outbreaks. The advent of novel
disturbances such asinvasive alien pests and pathogens could consid-
erably alter future disturbance regimes at the continental scale*’ and
further increase economic costs of disturbance. Another important
assumption in our analysis is that some of the disturbed timber is sal-
vage harvested and thus enters the timber market. This is the current
default management response to disturbances in Europe**?, yet the
practiceisincreasingly criticized for its ecological impacts**‘. Lower
salvagerates would likely further increase the economic costs of forest
disturbances®*.

While our quantification of disturbance costs is likely conserva-
tive, the estimate of the compensatory effect of increasing productiv-
ity might be optimistic. Productivity gains offset disturbance losses
because they simultaneously increaseinitial forest values and periodic
returnsinour analysis (Extended DataFig. 5), yet the assumptions with
regard to initial values are uncertain (that is, similar forest age struc-
ture at higher productivity levels). Furthermore, effects of reduced
water use efficiency® or acclimation effects in response to elevated
CO,"*werenot considered here. Infact, recent studies already indicate
declining forest growth eveninsome areas of Northern Europe*. While
we here used best available modelling approaches at continental scale,
these uncertainties call for further research on economic effects of
both changing productivity and disturbance***5,

The high economic costs of disturbance identified here have
important implications for forest policy and management. First,
losses from disturbances need to be considered more explicitly in
forest planning and the economic valuation of different forest man-
agement strategies. While even-aged coniferous forests were propa-
gated throughout Europe on the basis of economic grounds in the
past, these considerations ignored the substantial disturbance risk
of thesessilvicultural systems*’, and hence also the associated costs.
As disturbances are likely to increase further under climate change,
future considerations of forest planning and management need to
explicitly account for their impacts®. Second, we show that consid-
erable adaptation efforts are needed to reduce disturbance impacts
in Europe’s forests. While these efforts (including measures such as
planting less disturbance-prone tree species and managing for struc-
tured and mixed forests***") require resources, they will also reduce
disturbancerisk***' and thus disturbance-related costs. This highlights
thatthereis not only an ecological but also an economical imperative
to climate change adaptation in forestry. We show that moderately
reducingrotation lengths might reduce disturbance costs, illustrating
the potential of climate change adaptation measures in silviculture.
However, such measures could also have unintended consequences
onotherecosystemservices such as forest carbon storage and habitat
value®**?, and should thus only be applied after careful consideration
of local trade-offs. Efforts should particularly focus on hotspots of dis-
turbanceimpactsin Central and Southern Europe, where the expected
riseindisturbance-related costs could become increasingly prohibitive
for regular forest management in the absence of adaptive measures.
Lastly, our results underline theimportance of climate change mitiga-
tion. Only when climate change was limited to mild levels (scenario
RCP2.6) did net positive economic effects of changing productivity and

disturbance emerge throughout the European continent. In contrast,
largely unmitigated climate change (scenario RCP8.5) could lead to
severe economic losses from disturbances, particularly in Southern
and Central Europe. We thus conclude that mitigating climate change
canavoid substantial disturbance-related costsin the forestry sector.

Online content

Any methods, additional references, Nature Portfolio reporting sum-
maries, source data, extended data, supplementary information,
acknowledgements, peer review information; details of author contri-
butions and competing interests; and statements of dataand code avail-
ability are available at https://doi.org/10.1038/s41558-025-02408-9.
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Methods

We modelled forest development explicitly for 16 x 16 km grid
cells across Europe at 10-year time steps using a matrix model
(Extended Data Fig. 1). In each grid cell, we considered the forested
area of the four economically mostimportant tree species in Europe’®,
namely, European beech (Fagus sylvatica L.), Norway spruce (Picea
abies (L.) H.Karst), Scots pine (Pinus sylvestrisL.) and deciduous oaks
(Quercus robur L. and Quercus petraea Matt. Liebl.). Together, these
species account for more than 95% of the European timber market™
and two-thirds of Europe’s forest area (91 million hectares). Stand
age distributions were extracted from an analysis based on remote
sensing’*, and tree species shares for each 10-year age-class bin were
considered proportional to the species composition at grid-cell level.
Foreach16 x 16 kmgrid cell, the forest areawas thus distributed to 104
classes (4 tree species x 26 age classes).

For the sake of parsimony and to consistently compare the effects
of disturbance and productivity change across Europe, we assumed a
single silvicultural system for all simulated forests. As the clear-cut
system s still the dominant silvicultural systemin Europe for the tree
species considered here?***, we simulated even-aged stand develop-
ment followed by clear cutting and planting. We accounted for local
variationin managementintensity across Europe by deriving rotation
lengths at the cell level. Specifically, we calculated economically opti-
mal rotation lengths (that is, the age of final cutting that maximizes
forest value) contingent on tree species and local site productivity
for each cell (see Supplementary Table 1 and section ‘Calculation of
the economically optimal rotation age’ in Supplementary Methods
for more details). For the calculation of optimal rotation lengths, we
assumed timber production to start from bare ground and we disre-
garded disturbances.

Forest managers are actively adapting their management to the
emerging changes in environmental conditions. Whileacomprehensive
assessment of the economic effects of climate change adaptation meas-
ures is beyond the scope of our analysis, we considered two elements
of climate change adaptation in our simulations: First, we simulated
anadaptation of optimal rotation periods to the emerging changesin
productivity under climate change. This wasimplemented by deriving
optimalrotation periods separately for each climate scenario and grid
cell (see section ‘Climate data’ in Supplementary Methods for more
details). Thus, rotation periods are effectively shortened in locations
where productivity increases, and rotation periods are extended in
areas where productivity decreases, simulating dynamic adaptation
of managers to changing environmental conditions. Second, we tested
the effect of adapting the rotation length fromitslocal economic opti-
mum value in a sensitivity analysis, varying rotation period length by
up to +20 years from the economic optimum (Extended Data Fig. 2).In
Europe, reducing rotation period lengthis ameasure thatis frequently
discussedin the context of dampening theimpacts of disturbances™,
while extending rotation periods can increase forest carbon storage
and habitat value®®. Thinnings were disregarded in our simulations®,
and we simulated notree species change, thatis, species were replanted
intheir current proportions after final harvesting or disturbance (but
seerefs.53,56).

We assessed the effect of climate change by considering two time
slices, one representing historical climate (1981-2005) and one future
climate (2076-2100). For each time slice, we simulated 500 years of for-
estdevelopment starting from current forest conditions, with climate
conditions averaged for each time slice. We chose this approach over
transient scenario simulations as it better quantifies the long-term
economic consequences of changing climate and disturbance regimes,
given that discounting in economic analyses strongly reduces the
weight of future changes in transient analyses. We chose a simulation
period of 500 years, as it contains multiple rotations, and aggregated
cash flows beyond this period have little influence on the forest value
because of discounting. Additional to the time slice representing

historical climate, we considered 3 climate scenarios (representing
different radiative forcing levels, that is, RCP2.6, RCP4.5 and RCP8.5
from CMIP5) each derived from 3 different climate models, downscaled
toour16 x 16 kmgrid cells (for details see section ‘Climate data’ in Sup-
plementary Methods). This resulted in 12 different climate scenarios
consideredinthe analyses. Climate affected both productivity and dis-
turbanceinthe simulations, as described in the following paragraphs.

Forest productivity and its response to climate change was quanti-
fied by dynamically simulating the potential net primary productivity
(NPP) per grid cell and species. Potential NPP was defined as the NPP
of a fully stocked pure stand of a species under a given climate, dur-
ing the stand development stage in which tree growth culminates.
Potential NPP for each grid cell and scenario was estimated using a
deep neural network trained on data generated by the process-based
simulation modeliLand*”*®, To derive training data for the deep neural
network, we used iLand to simulate NPP values of the four tree species
across the full climate and soil gradients of Europe and under the 12
different climate scenarios considered. In iLand, NPP increases with
temperature (aslong as temperatures are below optimal temperatures
for photosynthesis) and atmospheric CO, concentration, while water
availability (in the atmosphere and soil) and plant-available nitrogen
limit the carbon uptake of trees (a detailed description of iLand and
the mechanisms used to calculate NPP can be found in refs. 57,58 and
onthe model website https://iland-model.org). We ran simulations on
the basis of daily climate data for each climate scenario (see section
‘Climate data’in Supplementary Methods) and extracted the resulting
annual NPP values. We developed a feedforward convolutional deep
neural network with 13 layers and 189,000 trainable parameters. We
subsequently trained the deep neural network on 14 million datapoints
derived fromilLand to predict annual potential NPP values for the four
tree species under study, contingent on the soil and climate conditions
prevailingatagrid cell (see section ‘Forest productivity under climate
change’ in Supplementary Methods). The deep neural network was
wellabletolearnthe responses of the underlying process-based model
and generalized well between climate change scenarios. Predicted
potential NPP values for current climate conditions were evaluated
againstindependent observations fromsatellite data (see section ‘For-
est productivity under climate change’ in Supplementary Methods).
To derive merchantable timber volume in our matrix model simula-
tions, we used species-specific yield table estimates (see section ‘Yield
tables’ in Supplementary Methods for more details), dynamically
calculating the respective yield class from potential NPP values per
cell. Specifically, we used a quadratic link function to capture the non-
linear relationship between NPP and yield class (see section ‘Mapping
of NPP values to yield tables’ in Supplementary Methods), assuming
correspondence between the range of potential NPP values predictedin
simulations under historical climate and the range of yield class values
coveredinyield tables. In this way, we combined the robust estimates
of merchantable timber volume from yield tables with dynamically
simulated productivity changes under climate change, resulting in
realistic projections of future timber production at cell level.

To comprehensively assess the impact of natural disturbances,
we considered two types of disturbances in the simulation: first,
climate-sensitive ‘background’ disturbances were derived on the
basis of statistical survival probabilities estimated on the basis of
continental-scale forest inventory data® (see section ‘Background
disturbances’in Supplementary Methods). This disturbance typerepre-
sents small-to medium-scale events that happen regularly (for example,
small-scale mortality from drought or insect infestations, small-scale
windthrow), but do not lead to larger-scale economic implications
such as market crashes. They were sensitive to changing mean annual
temperature, maximum temperature of the warmest month, minimum
temperature of the coldest month, annual precipitation sum and pre-
cipitation sum of the warmest quarter in our simulations*’. For each
grid celland tree species, we simulated these disturbances withineach
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time step by resetting a proportion of the cell’s area to age class zero
and replanting the area, with the proportion affected by disturbance
derived froma climate-sensitive hazard probability function®’. Second,
to account for economic risks from rare but large disturbance events,
we simulated stochastic, landscape-scale extreme events, such as severe
fires, windstorms and bark beetle outbreaks, using biome-specific
remote sensing data®* %, Extreme events were defined for each scenario
asthose affecting more thantwice theareadisturbedinan average year
of thescenario. To estimate the occurrence of such extreme disturbance
events, wefirst calculated historical biome-specific average disturbance
rates (1986-2005). We subsequently developed scenarios of potential
future changesinaverage disturbanceratesbased onexpectedincreases
in drought intensity and frequency in Europe?, as well as on other best
available estimates for future disturbance change’*** and the already
observedresponses to recent climate change (Supplementary Table 2).
Onthebasis of these analyses, we assumed mean disturbanceincreases
byafactorof2,4and 6, respectively, for RCP2.6, RCP4.5and RCP8.5, and
investigated the sensitivity of our results to a wide range of different
potential future disturbance changes (Supplementary Figs. 7 and 8).
Subsequently, the specific frequencies and magnitudes of extreme
events were derived using Taylor’s power law equations fit to remote
sensing data®® (Supplementary Fig. 1), estimating the temporal vari-
ance of disturbance rates per agent and biome under historical and
increased future mean disturbance rates. The occurrence of extreme
events in a simulated time step was determined at the level of biomes
by drawing from Poisson distributions. The affected areain each biome
was calculated by multiplying the number of extreme eventsineach time
step by their magnitude. Affected cells were then drawn randomly until
the estimated disturbed area was reached. In disturbed cells, depend-
ing on the disturbance agent (see section ‘Extreme disturbances’ in
Supplementary Methods), all or most of the forest area was reset to
age class zero.

Revenues from timber-based forest management were calculated
fromtree diameter- and species-dependent timber prices and estab-
lishment costs® (Extended Data Table 2). Revenues were discounted
and summed over the whole simulation period to quantify forest
value®* (default discount rate of 1.5%, but see Extended DataFig. 3 for
asensitivity analysis of different discount rates). Simulated increases
in productivity under climate change influenced forest value via
increased timber harvests, which positively affected forest value. Sim-
ulated disturbances had arange of nuanced economicimpactsinthe
simulation (Extended Data Table 3). For climate-sensitive background
disturbances, we assumed that theimpacted timber is sold with a 50%
decrease in net revenue due to a loss of timber quality and increased
harvesting costs (see section ‘Prices’ in Supplementary Methods). For
extreme disturbance events, revenues from disturbed timber were
setto zero for the affected grid cell, assuming a collapse of the timber
marketintheregionasaresult of large quantities of disturbed timber
flooding the market™. For extreme events, planting costs for the next
cohort of trees were assumed to increase by afactor of two, to reflect
higher post-disturbance expenses from planting large areas and to
account for typical shortages in nurseries after large disturbance
events. To assess the sensitivity of our results to additional market
effects of disturbances (that s, price drops from extreme disturbance
eventsradiating out to larger areas), we conducted anauxiliary analy-
sis in which we reduced the timber prices of regular harvests in cells
adjacentto those affected by extreme disturbance events (see section
‘Prices’ in Supplementary Methods and Supplementary Fig. 7).

To account for the stochastic nature of disturbances, we used
Monte Carlo simulations® to consider awide range of potential future
disturbance impacts. This method involved running multiple simu-
lations for each studied scenario. Within each simulation, different
random disturbance events were generated to capture a wide range of
disturbance sequences and their corresponding economic outcomes.
This allowed us to quantify the variability of the economic impacts

of disturbances. Monte Carlo approaches have been widely used in
economics and ecology®**, and are particularly suited to capture the
impacts of highly variable events®. Specifically, we ran100 Monte Carlo
simulations for each scenario and cell with different random numbers
used for (1) drawing extreme disturbance events in each time step and
(2) choosing which cells are affected by these events. To assess the
economic impact of disturbances, we calculated losses as the average
difference in economic value between simulations with and without
disturbances across all simulations. In other words, simulations without
disturbancesin therespective climate scenarios served as the counter-
factual to quantify the economicimpacts of disturbance. Since distur-
bances, particularly extreme events, disproportionatelyimpact the fat
tail of skewed economic damage distributions (Supplementary Fig. 2),
and mean comparisons cannot fully capture the effects of increasing
frequencies of rare events', we also analysed extreme values from our
Monte Carlo simulations. Specifically, for each scenario and simulated
cell, we calculated the average of the worst 5% of economic losses across
all Monte Carlo runs (conditional value at risk). To transform losses in
net present value into annual costs, we calculated an annuity by multi-
plying thelosses by the assumed discount rate of the simulation (1.5%).
Regional analyses were conducted for European regions as suggested in
the Forest Europe report* (Fig. 3¢c). Within each region, hotspot areas
were defined as cells above the 99th percentile of all valuesin that region
(Extended Data Table1). To estimate economic costs per unit forest area,
the total costs were divided by the forested area for each cell.

We successfully evaluated our simulation approach againstinde-
pendent data for several key metrics. The simulated standing timber
volume and annual timber extraction rates under historical climate
matched observed values well (Supplementary Figs. 5 and 6). The
model estimated that 28.7% of the annual timber harvest was due to
natural disturbances under historical climate, which amounted to
74.5 million m® timber yr (Table 1). These values are well within the
range of empirical datafromrecent decades, reporting 42.6-78.5 mil-
lion m*of timber disturbed annually and 12%-32% of unplanned canopy
openings from disturbances relative to the total harvested timber vol-
ume for the period 1986-2005%"%, These results highlight the robust-
ness of our simulations; full details of the evaluations conducted are
provided in Supplementary Methods (see sections ‘Standing timber
volume’ and ‘Amount of extracted timber’). We used TensorFlow® in
combination with Keras API”’ in Python for implementing the deep
neural network. All other simulations and analyses were done using the
R programming environment” in R Studio’v.2023.12.1.402.

Data availability
The simulated dataare available viaZenodo at https://doi.org/10.5281/
zenodo.15878694 (ref. 73).

Code availability
The code for reproduction of all analyses is available via Zenodo at
https://doi.org/10.5281/zenod0.15878694 (ref. 73).
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Extended Data Table 1| Average and extreme costs of disturbance for each European region and RCP scenarios

Region RCP scenario Regional average Local hotspots
Average costs (€ ha™) Extreme costs (€ ha™) Average costs (€ ha™) Extreme costs (€ ha™)
Historical 782.5 1,186.0 3,7301 6,568.4
RCP2.6 966.2 2,426.8 4,3081 9,746.8
North
RCP4.5 11637 3,893.3 4,745.4 12,370.1
RCP8.5 1,523.9 4,940.5 6,005.2 14,664.4
Historical 1,906.4 4,831.1 5108.4 10,936.0
RCP2.6 2,460.1 71051 5,920.5 13,931.6
Central-West
RCP4.5 3,233.1 9,097.0 714.6 17,066.5
RCP8.5 4,375.4 10,959.7 8,876.3 19,885.1
Historical 1,7376 4,181.6 5,203.1 9,502.4
RCP2.6 2,150.9 6,115.1 5,775.3 12,195.7
Central-East
RCP4.5 2,688.7 7,955.1 6,509.2 14,507.7
RCP8.5 3,742.7 10,037.2 7,986.7 16,709.5
Historical 1,522.7 4,885.9 3,623.6 11,362.0
RCP2.6 2,085.4 6,731.1 4,4231 13,949.6
South-West
RCP4.5 29024 8,397.5 5,941.3 16,4381
RCP8.5 3,603.3 8,837.1 7,550.8 17183.2
Historical 1190.7 3,009.0 2,853.2 7453.8
RCP2.6 1,509.0 4,381.2 3,452.3 9,329.0
South-East
RCP4.5 1,886.2 5,5011 4,250.0 10,949.3
RCP8.5 2,383.4 6,0221 5,2701 12,008.4

The table shows both the average value of the whole region (Region average) and the costs of hotspots within the regions (Local hotspots), that is the 99th percentile of all cell values in the
region. All values are shown as cost in € per hectare.
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Extended Data Table 2 | Prices and costs

Species Timber prices (net after harvesting costs) (€/m?) for diameters of

Establishment
5415cm 15-25cm 25-35cm 35-45cm 45-55cm >55 cm costs (€/ha)
Beech 0 5 10 25 40 50 500
Oak 0 5 15 25 40 60 500
Pine 0 5 20 35 40 45 1,500
Spruce O 5 25 40 45 45 2,000

Assumed timber prices (net prices after harvesting costs) (€/m?) for each species and diameter class and planting costs (€/ha) derived from 53.
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Extended Data Table 3 | Disturbance effects on the timber-based economy

Disturbance type Affected variable

Effect

Implemented as

Background disturbance Net revenue

Net timber price drop resulting from lower
quality and increased harvest costs

Reducing the price of disturbed timber by
50%

Net revenue

Timber price drops as markets crash due to a
pulse of disturbed timber flooding the market

Reducing the price of disturbed timber by
100%

Salvage costs Additional costs to salvage harvest disturbed Additional costs of €10 per m® disturbed
Extreme disturbances timber timber
Establishment costs Increased establishment costs, as local Increasing establishment costs by 100%
availability of machinery, manpower, and relative to establishment costs following
planting material is limited regular harvests
Both Harvest age Disturbances lead to earlier harvests than the Harvesting timber when disturbance occurs

economically optimal rotation age

Consequences of disturbances on the timber-based value of forests by disturbance type, and notes on their implementation in our analysis.
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Extended Data Fig. 1| Graphical overview of the analysis approach. We
initialized the simulated forests (16 x16 km grid cells) using recent species
distribution maps*® and age class information extrapolated from NFI data for
continental Europe™. Forest growth was simulated based on soil- and climate-
sensitive NPP estimates for each tree species, derived from a deep neural
network trained on simulations of a process-based forest growth model. NPP
values were mapped to yield tables to obtain information on merchantable
timber volume and mean tree diameter. We simulated an even-aged clear-cut
system (pictogramsin top row), with the rotation length varying between cells.
To calculate optimal rotation length per cell, we converted extracted timber
volumes into economic cashflow and computed the net present value for each
possible rotation length (from O to 260 years in10-year intervals), assuming a

discount rate of 1.5%. The optimal rotation length was defined as the one that
maximizes net present value. After final harvest, we assumed the area was
regenerated with the same tree species. To quantify the effect of disturbances,
we explicitly simulated two types of disturbances: First, climate-sensitive,
background disturbances derived from empirically parameterized hazard
probabilities® (center row), and second, stochastic extreme disturbance events
informed by observations from remote sensing® and scaled to future scenarios
using Taylor’s power law equations®® (bottom row). In the event of a disturbance,
therevenues from timber were reduced for background disturbances, and set
to zero for extreme disturbances, representing the combined effects of market
price responses, wood devaluation, and increased harvesting costs in the wake
of disturbances®. Figure created with BioRender.com.
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Forest value change [billion €]

Extended Data Fig. 2| Economic effects of adjusted rotation lengths.
Changing rotation periods from their economic optimal values can be used in
silviculture to reduce disturbance risks, and to improve other forest functions
suchas forest carbon storage and habitat value. Changes in the rotation period
have two effects: (1) they result in economic losses because the rotation period

Effect of economically suboptimal rotation period
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the economic costs of disturbance (orange bars). Barsindicate average values,
whileE error bars indicate the standard deviation (N = 300), and points are the
net effect and its standard deviation of both economic implications. A positive
net effect means an overallincrease in forest values compared to default
rotation lengths.

isnolonger at its economically optimal value (blue bars), and (2) they affect
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Extended Data Fig. 3| Theimpact of varying discount rates and choice of
climate model on the costs of disturbances. Lower discount rates decrease
forest value due to higher costs of disturbance. The overall effect of climate
change onthe costs of disturbance is apparent for all evaluated discount rates
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and climate models used. Each bar indicates the average disturbance costs

(N =300 for panel ‘All’, N =100 for each climate model), while the error bars show
the average costs + the standard deviation of simulated costs. The ‘All’ panels
include results of all simulated climate models. Raw data is shown as points.
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Extended Data Fig. 4 | Hotspots of future disturbance costs in Europe for mean over the 5% highest costs. For visibility, only cells with a forest cover of at
different climate scenarios. The color of each point represents the cost per least 5% are displayed. For comparability with Fig. 3, we kept the color scale the
hectare of forest within a16 by 16 km cell, and the size of each point corresponds same as in Fig. 3. We note, however, that 0.1% of the extreme disturbance costs
to the forested area within that cell. Panel (a) shows average disturbance costs under RCP8.5 are beyond the color scale used. The map uses the ETRS89-LAEA

across all simulations, while panel (b) indicates extreme values, expressed as the Europe projection (EPSG:3035). Credit: shape file by Andy South.
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Extended DataFig. 5| Effects of productivity-related increases ininitial transparent area of the bars indicate high uncertainty of net positive economic
growing stock on gains in forest value. Changes in forest value at the effects, as economic effects would turn negative in these cases if initial forest
continental (a) and regional (c) scale under future climate compared to historical ~ values were to remain constant with increasing productivity. Continental (b)
values asin Fig. 3. Blue bars represent losses due to increasing disturbances, and regional (d) forest values under different climate scenarios as in Fig. 3. Gains
green bars show gains from increasing productivity. Productivity-related gains duetoa productivity-related increase ininitial forest value are indicated as the
are attributed to effects oninitial growing stock (derived relative to growing transparent portion of the bars. Inall panels, data show the mean + s.d. across all
stock levels under historical productivity) - indicated by the transparent simulations (N=300) in the respective stratum. Regions were defined as in Fig.
portions of the bars - and effects related to increased sustainable harvest 2c.Icons in aadapted from OpenMoji (https://openmoji.org/) under a CC-BY-SA
levels over the simulation period (solid portion of the bars). Dots indicate 4.0licence.

the net change in forest value compared to historical values. Dots within the
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Extended Data Fig. 6 | Effects of changing forest disturbance and
productivity on forest value in Europe. Changes in forest value for each
country under future climate compared to historical values. Blue bars represent
average losses due to increasing disturbances, green bars show average gains
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duetoincreasing productivity. Dots indicate the net change in forest value
compared to historical values, error bars represent the standard deviation across

allsimulations (N =300) in the respective country.
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