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Abstract: Background: The forestry industry plays an important role in the economy and
environmental sustainability, facing significant logistical challenges such as the geograph-
ical dispersion of plantations, the variability of raw materials, and high transportation
costs. Artificial Intelligence (AI) emerges as a promising tool to optimize logistics processes,
contributing to the reduction in costs, waste, and environmental impacts. Methods: This
study combines a literature review and case analysis to assess the impact of Al on forestry
logistics. Machine Learning algorithms, optimization systems, and monitoring tools based
on the Internet of Things (IoT) and computer vision were analyzed to assess impacts in areas
such as transportation planning, inventory management, and forest monitoring. Results:
The results demonstrated that optimization algorithms reduced transportation costs and
carbon emissions. Predictive tools proved to be effective in inventory management, while
real-time monitoring with drones and sensors allowed for the identification and mitigation
of environmental risks, such as pests and fires, promoting greater operational efficiency.
Conclusions: Al has great potential to transform forestry logistics, improving efficiency
and sustainability. However, its implementation faces barriers such as high upfront costs
and limitations in data collection, and strategic collaborations are needed to maximize
its impact.

Keywords: Artificial Intelligence (Al); logistics; forestry industry; sustainability

1. Introduction

The forestry sector faces increasing pressure to enhance operational efficiency and
sustainability amid rising global demands for wood products and stricter environmen-
tal regulations. Traditional logistics approaches often fail to address the sector’s unique
challenges, such as geographical dispersion and resource variability, necessitating inno-
vative solutions. Artificial Intelligence (Al) offers transformative potential to optimize
these processes, yet its application in forestry logistics remains underexplored. This re-
search is motivated by the need to bridge that gap, providing a comprehensive evaluation
of Al’s role in improving logistics efficiency and sustainability. The contribution of this
study lies in its systematic synthesis of the existing literature and case studies, offering
actionable insights for stakeholders and identifying future research directions to advance
Al adoption in the forestry sector. Within this study, Al encompasses a broad range of
technologies capable of independent reasoning and decision-making, with Machine Learn-
ing (ML)—particularly its predictive analytics capabilities—considered a key subset. Al
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systems mimic human cognitive functions, such as learning from data, adapting to new
inputs, and making autonomous decisions, distinguishing them from traditional rule-based
systems. While Al includes advanced applications like natural language processing and
image recognition, ML's established role in pattern recognition and forecasting is central to
logistics optimization, offering actionable insights from complex datasets.

The forest chain plays a central role in several global economies, standing out not only
for its economic relevance but also for its significant impact on environmental and social
sustainability [1]. This sector is part of a vast value chain, which ranges from the production
of raw materials, such as wood and cellulose, to the manufacture of finished products,
including paper, furniture, or biomass to energy [2]. In Portugal, the forestry sector is
particularly relevant, representing one of the country’s main exporting and employing
industries [3]. However, this sector faces complex logistical challenges, ranging from
efficient resource management to optimizing transport, storage, and distribution chains.
These challenges, when poorly managed, can result in high costs, wasted resources, and
significant environmental impacts.

In the current context, characterized by increasing pressure to integrate sustainable and
efficient practices, technological innovation emerges as an indispensable tool to overcome
traditional obstacles in forestry logistics. Artificial Intelligence (Al), in particular, has
proven to be a powerful ally in transforming processes and business models across different
sectors [4]. Its ability to process large volumes of data, identify complex patterns, and offer
predictive solutions places Al at the forefront of the logistics revolution, opening up new
possibilities for the forestry chain [5,6]. In this sense, the application of Al-based tools
can optimize operational efficiency and also promote more sustainable and responsible
practices [7].

The logistical challenges faced by the forestry chain are multifaceted and include,
among others, the transportation of bulky and heterogeneous materials, the management
of stocks subject to deterioration, and the coordination of operations in geographically
dispersed areas [8]. Additionally, the inherent variability of forest production, conditioned
by climatic, seasonal, and biological factors, requires highly adaptable and resilient logistics
systems [9]. The traditional manual and fragmented approach to these challenges often
proves insufficient, especially given the increasing complexity of global supply chains [10].

Al applications range from demand forecasting, enabling more efficient resource man-
agement, to the automation of repetitive tasks, such as route planning and warehouse
management [11]. In the forestry supply chain, the application of these technologies
remains, however, still in its infancy, although there are already success stories that demon-
strate their transformative potential [12]. For example, Al-based systems have been used to
predict forest growth, optimize timber harvesting and transportation, and monitor forest
health in real time using data from satellites and drones, improving operational efficiency
and contributing to environmental conservation by enabling more sustainable management
of natural resources [13].

Despite its potential, the implementation of Al technologies in the forestry chain still
faces significant barriers, including the high initial cost of adoption, resistance to change
by organizations, and the need to develop specialized technical skills [14]. Additionally,
effectively integrating Al into existing logistics systems requires a robust and accessible
digital infrastructure, something that not all companies in the sector have [15]. Therefore, a
joint effort between industry, government, and academic institutions becomes necessary to
encourage the adoption of these technologies, promoting incentive policies, training, and
capacity development [16].

Another relevant aspect to be considered when applying Al in the forestry production
chain is the ethical and social issue. The use of Al algorithms for decision-making raises
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concerns related to transparency, fairness, and accountability. For example, the automation
of logistics processes can lead to job losses in certain areas, affecting rural communities
dependent on the forestry chain [17]. Therefore, the implementation of these technologies
must be accompanied by an ethical and inclusive debate, ensuring that the benefits of
digital transformation are shared equitably and that potential negative consequences are
mitigated [18].

This article seeks to examine the role of Artificial Intelligence (Al) in optimizing
logistics processes within the forestry sector, highlighting the benefits, challenges, and
implications of this technological transformation. The analysis centers on three primary
objectives: (1) identifying areas of forestry logistics that can benefit from Al applications,
(2) presenting practical examples of Al-based solutions and their impacts, and (3) discussing
the barriers and opportunities associated with the adoption of these technologies in the
sector. To achieve this, a review of the existing literature was conducted, supplemented by
case study analyses and the identification of emerging trends.

Al is necessary to distinguish from traditional optimization methods, such as heuristic
algorithms (e.g., A-Star) or linear programming, which seek optimal solutions based on
predefined rules but lack adaptive learning. Al’s unique advantage lies in its ability to
autonomously learn from data, adapt to dynamic conditions (e.g., weather, traffic), and
handle unstructured inputs (e.g., satellite imagery), surpassing traditional methods’ static
frameworks. For instance, while A-Star optimizes routes efficiently, ML can predict demand
shifts, offering proactive rather than reactive solutions, critical for forestry’s variability.

Throughout the manuscript, specific examples include regional and country contexts to
balance broad conceptual themes with localized applicability. For instance, in Section 4.2.1,
the eucalyptus plantation case study from Uruguay is contextualized with its relevance to
Portugal, while Section 4.2.2 details drone monitoring in Portugal’s pine forests. Additional
examples in Section 3, such as Sweden'’s use of ML for transport optimization and India’s Al-
driven biodiversity monitoring, provide geographical diversity, enhancing the framework’s
extrapolability. Figure 1, presented at the end of this section, visually illustrates how
Al technologies integrate into each forestry logistics stage, enhancing readability and
conceptual clarity.

Al : >  Harvesting
Technologies
Machine Transport
Learning
Deep
Learning Inventory
Internet of
Things

Figure 1. Conceptual framework illustrating the integration of Al technologies—such as Machine
Learning, Deep Learning, and the Internet of Things—into key stages of forestry logistics, including
harvesting, transport, and inventory management.

2. Methods
2.1. Methodological Approach

This study adopts a mixed-methods approach, integrating a systematic literature
review (SLR) with case study analysis to evaluate the role of Alin forestry logistics. The SLR

was conducted following a systematic protocol to ensure an unbiased and representative
sample, in accordance with best practice guidelines [19]. The Scopus, Web of Science,
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and IEEE Xplore databases were selected for their extensive coverage of peer-reviewed
publications in engineering, environmental science, and technology. The search spanned
the period from 2010 to 2024, reflecting the rapid evolution of Al technologies during this
timeframe (Figure 2).

Start

Exploratory and Descriptive Approach
(Quantitative and Qualitative)

Literature Review Case Study Analysis
- Identify existing studies - Select Al applications in forestry
- Build theoretical basis - Analyze implementation
- Identify gaps in literature - Observe impacts and challenges
(End]

Figure 2. Methodological framework of this study.

Two sets of keywords were combined for the search: (1) terms related to Al, includ-
ing “Artificial Intelligence”, “Machine Learning”, “Deep Learning”, “Natural Language
Processing”, “ Artificial Neural Networks”, “Computer Vision”, and “Expert Systems”, to
capture the diversity of Al technologies; and (2) terms related to forestry logistics, such as
“Forestry Logistics”, “Forest Supply Chain”, “Timber Transportation”, “Inventory Manage-
ment”, and “Forest Monitoring”. Examples of combinations include “Artificial Intelligence
AND Forestry Logistics” and “Machine Learning AND Timber Transportation”. The initial
search yielded 237 articles (Scopus: 152; Web of Science: 60; IEEE Xplore: 25), which were
reduced to 198 unique records after duplicate removal.

Inclusion criteria were as follows: (1) articles published in English, (2) a focus on Al
applications in forestry logistics or related supply chains, and (3) availability of full text.
Exclusion criteria eliminated studies addressing solely forest ecology without a logistics
connection or those not peer-reviewed (e.g., technical reports). The selection process com-
prised three stages: (1) an initial screening of titles and abstracts, excluding 108 irrelevant
articles; (2) a full-text review of the remaining 90 articles, discarding 10 due to insufficient
empirical data or lack of focus; and (3) a final validation, resulting in 80 included studies.
These studies were categorized by country of origin, application area (e.g., transport plan-
ning, inventory management), and Al technology type, enabling a structured synthesis
of findings.

The case study analysis concentrated on two documented implementations—transport
optimization in eucalyptus plantations and forest monitoring with drones—chosen for their
relevance and availability of detailed outcomes. Qualitative data from these cases were
assessed to complement the SLR with practical evidence. Figure 3 illustrates the search and
selection process, ensuring transparency and reproducibility. This dual approach provides
a comprehensive evaluation, integrating theoretical insights and real-world applications of
Al technologies in forestry logistics.
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Figure 3. Enhanced workflow of the literature review and case study analysis, detailing the selection
process from 237 initial articles to 80 final studies.

In the SLR, the search was performed across Scopus, Web of Science, and IEEE Xplore,
covering publications from 2010 to 2024 to capture recent advancements in Al technologies.
The initial search employed keyword combinations such as “Artificial Intelligence AND
Forestry Logistics”, “Machine Learning AND Timber Transportation”, and others outlined
in Section 2.1, retrieving 237 articles (Scopus: 152; Web of Science: 60; IEEE Xplore: 25).
Following duplicate removal using bibliographic management software, 198 unique records
remained. Additional filters included language (English), publication type (peer-reviewed
articles), and full-text access, excluding theses, technical reports, and unavailable studies.

The selection process followed three steps: (1) an initial screening of titles and abstracts,
eliminating 108 articles addressing topics such as pure forest ecology or technologies
unrelated to logistics (e.g., plant genomics); (2) a full-text review of the remaining 90 articles,
excluding 10 due to lack of empirical data (e.g., narrative reviews without quantitative
results) or insufficient focus on forestry logistics; and (3) a final validation, confirming the
80 included studies based on their direct relevance to the study’s objectives—exploring Al
applications in transport, inventory management, and forest monitoring.

The final sample of 80 articles was selected for its balanced coverage of Al applications
in forestry logistics, emphasizing both practical and theoretical evidence. These studies
underwent qualitative analysis through thematic coding (e.g., transport, sustainability),
ensuring alignment with research objectives and enabling external validation of the process.

2.2. Limitations of the Methodology

Although the methodology adopted was designed to provide a comprehensive analy-
sis, it has some limitations that deserve consideration. One of the main limitations is the
limited availability of detailed and specific data from the forestry sector, which may restrict
the representativeness and depth of the analyses performed. In addition, the methodologi-
cal approach relies on emerging technologies, which are not always widely available or
accessible to all organizations, particularly in regions where technological resources are
scarcer. Another potential limitation is the existence of biased results due to the use of data
that may not fully reflect the diversity and complexity of the forestry operations analyzed.

Beyond keyword combinations, the retrieval strategy could be enhanced with citation
tracking and related author searches to broaden the literature sample. However, time and
resource constraints limited this study to keyword-based searches across Scopus, Web
of Science, and IEEE Xplore. This approach, while robust, may miss fringe studies not
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indexed under selected terms, a limitation offset by the databases’” comprehensive coverage
of peer-reviewed work.

To address these limitations, future studies could leverage public data repositories
or satellite imagery to supplement scarce forestry-specific data, while phased technology
adoption (e.g., starting with low-cost sensors) could mitigate accessibility issues in resource-
limited regions. Standardizing data collection protocols across studies could also reduce
bias, enhancing representativeness.

3. Literature Review
3.1. Fundamental Concepts of the Forest Production Chain and Logistics

The forestry supply chain is a complex system that ranges from primary production,
involving the cultivation and maintenance of forests, to the transformation and distribution
of derived products, such as wood, paper, and biomass. This sector plays a strategic role
in several economies, including Portugal, where it contributes significantly to exports
and the country’s economic and environmental sustainability. However, the logistics
management of this chain faces specific challenges, such as the variability of forest resources,
the geographical dispersion of plantations, and the high dependence on climatic and
biological factors [20].

Forest logistics encompass critical processes, including transportation planning, in-
ventory management, storage, and distribution of finished products. These processes are
particularly influenced by the heterogeneity of forest resources, the need to preserve the
quality of materials during transportation, and the complexity of integrating operations
between rural and urban areas [21]. Lack of homogeneity in raw materials and chal-
lenging transportation and storage conditions further complicate logistical coordination
and efficiency.

Logistics efficiency is therefore important to ensure the competitiveness of the sector
while minimizing the associated environmental impacts. Studies such as that of D’Amours
and Ronnqvist [22] highlight that the use of advanced planning models, supported by
emerging technologies, can significantly improve the integration and management of
the forestry value chain, addressing current limitations and preparing the sector for
future challenges.

3.2. Applications of Al in Logistics

The ability to process large volumes of data, learn from historical patterns, and gen-
erate real-time forecasts allows Al to tackle complex problems more effectively than
traditional approaches [23]. In logistics, Al applications can be grouped into three
main categories:

1.  Forecasting and Planning: Al is widely used to predict demand and supply, based
on historical data and external variables such as weather conditions and market
fluctuations [24]. In the forestry sector, this capability can be applied to predict tree
growth, optimize felling cycles, and calculate transport requirements, reducing waste
and operational costs [25].

2. Process Automation: Al tools have been employed to automate repetitive tasks such
as inventory management and transport route planning [26]. These solutions not only
increase efficiency but also reduce human error and enable more effective resource
allocation [27].

3. Real-time Optimization: Al algorithms can be used to monitor and adjust logistics
operations in real time, based on up-to-date data [28]. For example, sensors and IoT
(Internet of Things)—a network of interconnected devices collecting and exchanging
data—installed in vehicles and warehouses enable tracking of goods, monitoring of
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transport conditions (e.g., temperature, humidity), and rapid responses to unexpected

changes, enhancing operational agility [29].

These applications are increasingly being explored in the forestry sector, where, for
example, Machine Learning algorithms are being used to plan transport routes that min-
imize costs and carbon emissions, while Al-based systems allow forests to be managed
more sustainably, analyzing data from satellite and drone images to monitor the condition
of plantations and prevent fires [30-33].

While not directly applicable to forestry, recent studies like Lu et al. [34] on crowd-
sourcing door-to-door delivery in Beijing highlight Al’s role in optimizing last-mile logistics,
offering insights into real-time route adjustments and cost efficiency that could inspire
adaptive transport models in forestry supply chains.

3.3. Relevant Al Technologies and Tools

The forestry supply chain encompasses several distinct stages, each presenting unique
logistical challenges. Primary production involves forest cultivation, including planting,
maintenance, and harvesting, where geographical dispersion and biological variability
complicate planning [35]. Processing transforms raw timber into products like lumber,
pulp, or biomass, requiring efficient material flow and quality control amidst heterogeneous
inputs. Distribution and transportation link these stages to markets, involving complex
route planning and storage to preserve product integrity across rural and urban interfaces.
Finally, end-use and waste management address product delivery and residue utilization,
critical for sustainability. These stages, interdependent yet diverse, underscore the need for
adaptive logistics solutions, which Al aims to enhance.

An example is the use of predictive analysis technologies in conjunction with com-
puter simulation systems, which allow the modeling of logistics scenarios, assessing the
impact of external variables, such as climate change, and testing solutions in virtual envi-
ronments before their practical implementation [36,37]. This approach reduces the risks
and costs associated with direct field experimentation while providing valuable insights
into the effectiveness of planned strategies. On the other hand, cloud computing-based
management systems allow the integration of data from multiple sources and real-time
accessibility by different stakeholders [38]. This centralization and democratization of
access to data improve coordination between the various links in the value chain, ensuring
greater operational fluidity.

Another technology that has been transforming forestry logistics is Explainable Artifi-
cial Intelligence (XAI) [39]. Unlike traditional Al models, which often function as “black
boxes”, XAl systems offer greater transparency into their operations, allowing users to
understand the decisions made by the algorithms [40]. This feature is particularly useful in
the forestry sector, where the implementation of technological solutions requires strong
trust on the part of managers and operational teams.

The advancement of edge computing technologies opens up new possibilities for
operations in remote locations, a common reality in the forestry sector [41]. With these
tools, data can be processed locally, directly on devices installed in the forests, such as
IoT sensors or drones, reducing the dependence on continuous connectivity with central
servers [42]. This decentralized processing capacity allows for faster and more efficient
monitoring, even in areas that are difficult to access.

The incorporation of emerging technologies, including geospatial intelligence and
blockchain analytics for traceability, has significantly influenced the forestry industry’s
capacity to tackle modern challenges and progress towards a more efficient and sustainable
future. He and Turner [20] highlight how these technologies, in combination with other
Industry 4.0 solutions, such as IoT and RFID, have the potential to optimize forestry supply
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chains, promoting greater efficiency and transparency. Bastos et al. [43] further emphasize
that digitalization and the use of blockchain in forest biomass chains improve traceability
and ensure more sustainable practices throughout the logistics chain. Also, Henriques
and Westerlund [44] explore how blockchain, integrated with IoT, can revolutionize forest
management, enabling unsupervised monitoring and accurate tracking of forest resources.
Elias [45] reinforced the role of blockchain when combined with GIS in enabling more effi-
cient traceability and more sustainable management of timber transportation, representing
a technological evolution and a true transformation in the way forestry logistics operations
are planned and executed, creating a more transparent, efficient model aligned with global
sustainability objectives.

To provide a clearer understanding of AI technologies applied in forestry logistics, this
section has been expanded to compare the strengths and weaknesses of key Al analytical
methods. Machine Learning (ML) excels in predictive analytics and pattern recognition,
leveraging large datasets for tasks like demand forecasting and inventory optimization;
however, it requires extensive, high-quality data, which can pose a limitation in data-scarce
regions. Neural Networks, particularly Deep Learning (DL), offer a superior performance
in processing unstructured data, such as images from drones for forest monitoring, but
their computational complexity and ‘black box” nature can hinder interpretability and
practical adoption. Blockchain, while not a traditional AI method, enhances traceability
and transparency in supply chains through secure, decentralized data management, though
it faces scalability challenges and high energy costs. Natural Language Processing (NLP)
supports the analysis of textual data, such as forestry reports, but its application in logistics
is less direct and often supplementary. These distinctions highlight ML and DL as founda-
tional for predictive and real-time optimization tasks, while blockchain complements Al by
ensuring data integrity, each suited to specific logistics challenges.

3.4. Gaps and Opportunities in the Literature

Despite significant advances in the application of Al in the forestry sector, the literature
still presents important gaps. Many studies focus on specific applications, such as the use
of algorithms for forest monitoring or logistics optimization, but there is a lack of integrated
approaches that consider all stages of the value chain. Buchelt et al. [46] highlight that,
although the use of drones and Al has been well-explored in specific contexts, such as
ecological management, the lack of integration between solutions limits the overall impact
of technology in the sector. Also, Shivaprakash et al. [47] point out that the social and
ethical impacts of Al implementation, particularly in rural communities dependent on the
forestry sector, have received little attention.

Another significant challenge is the quality and accessibility of the data needed to feed
Al systems. As indicated by Causevic et al. [48], focusing on global forest conservation,
the variability of forest ecosystems and the geographical dispersion of operations make it
difficult to collect consistent and representative data, limiting the effectiveness of predictive
models and automated systems. Similarly, Shivaprakash et al. [47], studying India’s forestry
sector, note that the social and ethical impacts of Al, particularly in rural communities,
remain underexplored, reflecting regional disparities in technological adoption.

On the other hand, there are promising opportunities to expand the use of Al in the
forestry sector, as the increasing availability of technologies such as drones, IoT sensors, and
satellite imagery facilitates the collection of large-scale and real-time data [46]. In addition,
advances in Machine Learning and Deep Learning algorithms open up new possibilities
for the analysis and interpretation of these data, enabling more precise and sustainable
management of forestry operations [49]. The global pressure to adopt sustainable practices
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and reduce carbon emissions also drives the demand for innovative Al-based solutions, as
highlighted by Chisika et al. [50].

The literature reveals critical gaps, such as the lack of holistic frameworks integrating
Al along the entire forestry value chain, which could amplify its impact. Opportunities
abound with the increasing accessibility of real-time data from IoT and satellite systems,
enabling more precise predictive models. Future research could explore hybrid Al solutions
combining Machine Learning and optimization algorithms to address these gaps, fostering
a more interconnected and sustainable logistics ecosystem.

4. Results and Discussion

The results of this study are based on a systematic analysis of 80 peer-reviewed
publications obtained from the Scopus, Web of Science, and IEEE Xplore databases, covering
the period from 2010 to 2024. Table 1 presents the distribution of these studies by country,
highlighting Europe (35%), North America (25%), and Asia (20%), with Portugal accounting
for 8%, reflecting the relevance of its forestry sector.

Table 1. Distribution of studies by country.

Country/Region Number of Studies Percentage
Europe 28 35%
North America 20 25%
Asia 16 20%
Portugal 6 8%
Others 10 12%
Total 80 100%

The qualitative analysis was conducted through thematic coding, identifying trans-
portation, inventory efficiency, and environmental sustainability as central themes, aligned
with the research objectives. The inclusion of a diverse sample, encompassing technologies
such as ML, DL, computer vision, and NLP, addresses the bias of previous studies that
focused exclusively on ML, providing a more holistic view of Al's impact.

4.1. Impacts of Al on the Optimization of Logistics Processes
4.1.1. Transport Planning

The transport of timber and other forest products represents one of the most expensive
components of the forestry sector, having a significant impact on the operational efficiency
and environmental footprint of the sector [51]. Some studies show that the application of
Al technologies in transport planning can contribute to improving logistics efficiency and
reducing costs and associated emissions [52].

Optimization algorithms, such as those based on the modified A-Star method, have
been explored for route planning, demonstrating significant improvements in the efficiency
of logistics operations. For example, Veisi et al. [53] used this approach to optimize
timber transport, prioritizing shorter and optimized routes in terms of energy cost and
environmental impact. Similarly, the multi-agent systems analyzed by Aratijo et al. [54]
proved to be effective in planning transport activities, dynamically adjusting operations to
factors such as road conditions and cargo volume, and increasing coordination between
different stages of the supply chain.

Additionally, the combination of Al algorithms with IoT sensors has enabled advances
in real-time monitoring of transport vehicles and cargo conditions, in turn enabling dynamic
adjustments to routes, optimizing the use of resources, and reducing energy waste. Malladi
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and Sowlati [55] also highlighted the role of optimization models at the operational level,
demonstrating how these technologies can increase transport efficiency.

4.1.2. Inventory Management

Inventory management in the forestry sector faces significant challenges, particularly
regarding the deterioration of timber and other stored products over time. The application
of predictive models based on Machine Learning has shown promise in addressing this
problem. Recent studies, such as that of Sumarlin and Qosidah [56], highlighted how
Machine Learning algorithms, including Neural Networks and random forests, can be
used to optimize inventory management by predicting behavior patterns and reducing
operational inefficiency.

In addition, advanced approaches, such as those described by Zhao et al. [57], indicate
that the use of Machine Learning in the context of the biomass and forest supply chain
can improve logistics efficiency and reduce waste in storage operations. These models
analyze variables such as storage duration and environmental conditions, allowing for
more accurate prediction of product condition and optimization of stock rotation. Another
relevant application, discussed by Raihan [58], involves the use of predictive algorithms to
adjust inventory levels to market needs. This dynamic adjustment allows for more efficient
management, minimizing the costs associated with excessive or insufficient stocks.

4.1.3. Waste Reduction

Studies such as that of Ming et al. [59] highlight how tools based on Machine Learning
and Neural Networks can be used to optimize resource management and minimize losses
in industrial processes. These technologies have been particularly effective in identifying
patterns that allow for more efficient operational adjustments, promoting material recovery
and waste reduction.

Holzinger et al. [5] highlight the importance of integrating Al into forestry operations,
namely through the automation and digitalization of processes such as wood quality as-
sessment. These approaches allow for more accurate sorting of raw materials before felling,
avoiding waste of resources by ensuring that each tree is used for the most appropriate
application. Additionally, Al tools have been applied to industrial processing, optimizing
cuts and maximizing the use of raw materials, as mentioned by Guo et al. [60], who analyze
innovations in the reuse of forest biomass.

Another significant contribution of Al in reducing waste is its ability to predict and
mitigate operational inefficiencies in real time. Hernandez et al. [61] explored how the
application of intelligent algorithms in sustainable supply chains can generate economic
and environmental benefits.

4.1.4. Environmental Sustainability

Wang et al. [49] highlighted how Al-based solutions have been integrated into the
concept of “Climate-Smart Forestry”, which combines predictive modeling and monitoring
to optimize harvesting cycles, ensuring sustainable management practices aligned with
climate change adaptation and mitigation.

In addition, Mahmood et al. [62] explore the role of Alin forest monitoring, particularly
in protecting biodiversity and managing risks such as fires and pests. The use of drones
and satellite imagery, combined with Machine Learning algorithms, has allowed for early
detection of problems, facilitating preventive interventions. These technologies offer greater
accuracy in identifying environmental risks and contribute to reducing the economic
impacts associated with forest loss and environmental degradation.

Holzinger et al. [5] highlight that the transition from traditional practices to sustain-
able, Al-centric models requires the implementation of human-centric systems capable of
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integrating large volumes of data and adapting to the dynamic conditions of the sector. This
approach reinforces the capacity for real-time monitoring and improves forest resilience,
ensuring practices that are more balanced between economic efficiency and environmental
responsibility. On the other hand, Galaz et al. [63] point out that the global adoption of
Al technologies in the forestry and agricultural sector plays a crucial role in managing
systemic environmental risks, such as the impact of climate change and biodiversity loss.

4.2. Practical Examples and Case Studies
4.2.1. Transport Optimization in Eucalyptus Plantations

The application of optimization models in the transportation of wood from eucalyptus
plantations has demonstrated a significant impact on logistical efficiency and the reduction
in operational costs. A study by Hirigoyen et al. [64] in eucalyptus plantations in Uruguay
exemplifies the effectiveness of optimization algorithms in transport management and
harvest scheduling. The results demonstrated that optimized planning reduced transporta-
tion costs by approximately 15% and increased the net present value by 10%, while also
lowering carbon emissions by 12% through efficient routing.

This study evaluated the impact of optimized planning on reducing costs associated
with transportation and increasing the net present value of operations, highlighting the
ability to integrate variables such as wood and carbon prices into the decision model. The
results demonstrated that the use of optimization algorithms allows for more efficient
planning of transport routes, contributing to minimizing logistics costs and maximizing
the financial and environmental sustainability of forestry operations. Although the study
was conducted in Uruguay, the optimization principles presented are broadly applicable to
eucalyptus plantations in other contexts, including Portugal, where the forestry chain is a
strategic sector.

4.2.2. Forest Monitoring with Drones and Al

The application of drones equipped with computer vision technologies has proven to
be a promising tool for real-time monitoring of forests, particularly in the context of pest
and disease management. As highlighted by Duarte et al. [65], the use of systems based on
data obtained by unmanned aerial vehicles (UAVs) allows for the rapid identification and
monitoring of the presence of insects and diseases in forest areas, integrating multispectral
and visible analysis techniques to improve accuracy in early detection.

Analysis of data collected by drones facilitates faster and more targeted interventions,
contributing to the reduction in damage caused by pests and the preservation of forest
health. These technologies offer greater efficiency compared to traditional monitoring
methods, allowing large areas to be covered in shorter periods of time and with lower
operational costs. Furthermore, computer vision techniques integrated with Al algorithms
enable detailed and automated analysis of captured images, increasing the effectiveness of
threat detection and mitigation.

Although quantitative data on damage reduction vary depending on local conditions
and the scale of application, the systematic study by Duarte et al. [65] demonstrates that
the use of drones, in combination with Al technologies is a significant step forward in
improving forest resilience and ensuring more sustainable management of forest resources.

4.3. Limitations of Al in the Forestry Context

Al in the forestry context of implementation faces structural challenges that go beyond
the most obvious technical or economic barriers [66]. One of the main obstacles is the
difficulty in establishing adequate infrastructure in rural and forested environments, where
digital connectivity is often limited or non-existent [67]. Studies like that of Sovacool
et al. [68] document job displacement risks in technology-intensive sectors, estimating a
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20-30% reduction in manual roles, a trend applicable to forestry automation. Mitigation
strategies include reskilling programs, such as Portugal’s ‘ForestTech’ initiative, which
trains workers in Al system management, and incentivizing hybrid roles blending tradi-
tional and tech skills to preserve employment.

This limitation compromises the collection of real-time data and the ability to integrate
Al systems into collaborative networks that depend on consistent connectivity. The lack
of sufficient historical data, or of inadequate quality, represents another challenge, as Al
predictive models rely on large volumes of representative data to ensure their effectiveness
and accuracy [69].

In addition, the complexity of the forestry industry, which includes dynamic interac-
tions between biological, social, and economic aspects, creates difficulties in translating
these variables into measurable and usable data for Al systems [70]. For example, environ-
mental variables, such as climate change and ecological disruptions, are often unpredictable
and difficult to model, limiting the ability of algorithms to learn and respond appropri-
ately to these fluctuations [71]. This limitation highlights the need for robust adaptive
systems, which, although promising, are not yet widely available or developed for this
specific context.

The training and technical capacity of teams responsible for forest management also
presents a significant obstacle [72]. The introduction of advanced technological solutions
requires specialized technical knowledge and the transformation of organizational and cul-
tural practices rooted in traditional approaches [73]. Resistance to change, often associated
with a lack of knowledge about the potential and benefits of Al, can inhibit enthusiasm for
adopting new technologies [66]. This factor is particularly evident in regions where the
forestry sector has historical and cultural economic importance but where management
models remain essentially conventional [74].

A critical consideration in pursuing Al-driven efficiency is the potential trade-off with
robustness. High efficiency, such as just-in-time inventory systems, can reduce costs but
may leave operations vulnerable to disruptions, as seen during the COVID-19 pandemic
when supply chain perturbations exposed the fragility of lean models. In forestry logistics,
over-optimization could similarly compromise resilience to climate variability or market
shifts. Balancing efficiency with adaptability—e.g., maintaining strategic reserves or flexible
routing—could ensure sustainable operations, a factor warranting further exploration in
Al implementation strategies.

Finally, the introduction of Al in the forestry sector also raises ethical and social con-
cerns, especially in relation to the automation of processes and the potential replacement of
jobs [63]. In rural communities that rely heavily on the forestry sector, the replacement of
human labor by automated systems can exacerbate already existing socioeconomic inequal-
ities, intensifying social challenges in these regions [68]. To ensure that Al implementation
is beneficial and sustainable, it will be necessary to adopt inclusive strategies that involve
redistributing employment opportunities and promoting reskilling programs [75]. These
actions can help mitigate the negative impacts of automation, ensuring that technological
evolution is accompanied by social progress.

4.4. Future Perspectives and Opportunities

Future prospects for the application of Al in the forestry sector point to a continuous
and dynamic evolution, driven by the need to innovate in the face of growing challenges in
sustainability, efficiency, and global competitiveness [76]. The integration of Al with other
emerging technologies presents a central opportunity to transform the sector [77]. This
technological convergence expands the individual capabilities of each solution and creates
synergies that allow complex problems to be tackled more effectively. For example, the
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combination of IoT sensors with Al algorithms and blockchain-based platforms can increase
traceability and transparency along the value chain, fostering trust between stakeholders
and facilitating the certification of sustainable practices [78].

The creation of adaptive systems is another promising development, enabling Al-
based solutions to respond in real time to unexpected changes, such as variations in
weather conditions or abrupt changes in market demand [79]. Such systems, equipped
with continuous learning capabilities, could automatically adjust transport, inventory,
and harvesting plans, ensuring greater resilience and reducing the impact of disruptive
events [79]. Adaptability will be especially important in a sector that is so dependent on
external factors, where environmental and economic uncertainties play a major role [80].

An emerging opportunity lies in federated learning, a technique where Al models
are collaboratively trained across multiple organizations without sharing proprietary data.
Already practiced in other sectors, such as healthcare and finance, federated learning could
enable forestry companies to enhance predictive models while preserving competitive
advantages, offering a practical alternative to traditional data-sharing challenges.

Additionally, data sharing between organizations, facilitated by collaborative networks
and digital platforms, could revolutionize the quality and usefulness of predictive models
applied to forestry logistics [25]. This type of collaboration has the potential to mitigate
limitations related to the scarcity of representative data, promoting a broader and more
diverse base to feed Al systems. The adoption of common standards and interoperability
protocols will facilitate these collaborations and maximize collective benefits.

Finally, the growing demand for environmentally responsible practices and the pres-
sure of public policies focused on sustainability are factors that will drive the application of
innovative solutions [81]. The technological evolution of the forestry industry, supported
by Al could become an example of how digital transformation can be aligned with sus-
tainable development goals, positioning the sector as a global reference in efficiency, social
responsibility, and environmental preservation [82].

5. Conclusions

Al is transforming forestry logistics, offering innovative solutions to complex chal-
lenges. The results of this study show that technologies such as Machine Learning al-
gorithms, optimization systems, and IoT sensors enable significant gains in operational
efficiency, environmental sustainability, and logistics resilience. Practical examples, such as
the optimization of transport routes and forest monitoring with drones, have demonstrated
notable reductions in costs, carbon emissions, and waste. Despite the advantages, the
implementation of Al faces barriers such as the collection of quality data, initial adoption
costs, and resistance to change from organizations and communities. These limitations
highlight the importance of strategic partnerships between companies, government, and
academic institutions to foster training, innovation, and data sharing in the sector. Look-
ing forward, the integration of Al with emerging technologies, such as blockchain and
adaptive analytics systems, represents a crucial opportunity to expand the benefits. This
study reinforces that the responsible and inclusive adoption of Al is essential to ensure
that digital transformation simultaneously contributes to the economic competitiveness
and environmental preservation of the forestry sector. Policymakers should incentivize Al
adoption through subsidies for small forestry firms, establish data-sharing consortia to im-
prove model accuracy, and fund reskilling programs to offset automation’s social impacts,
ensuring industry-wide sustainability and equity. This study lays a foundation for future
research by providing a replicable methodology and highlighting underexplored areas,
such as the integration of federated learning and resilience-focused Al models. Researchers



Future Transp. 2025, 5, 63 14 of 17

are encouraged to build on these findings, developing longitudinal studies and cross-sector
comparisons to further refine Al’s role in sustainable forestry logistics.
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