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Anthropogenic climate change
contributes to wildfire particulate matter
and related mortality in the United States

Check for updates

Beverly E. Law 1,6,7 , John T. Abatzoglou 2,6,7 , Christopher R. Schwalm3,6,7, David Byrne3,6,
Neal Fann4,6 & Nicholas J. Nassikas5,6,7

Climate change has increased forest fire extent in temperate and boreal North America. Here, we
quantified the contribution of anthropogenic climate change to humanmortality and economic burden
from exposure to wildfire particulate matter at the county and state level across the contiguous US
(2006 to 2020) by integrating climate projections, climate-wildfire models, wildfire smokemodels, and
emission and health impact modeling. Climate change contributed to approximately 15,000 wildfire
particulate matter deaths over 15 years with interannual variability ranging from 130 (95% confidence
interval: 64, 190) to 5100 (95% confidence interval: 2500, 7500) deaths and a cumulative economic
burden of $160 billion. Approximately 34% of the additional deaths attributable to climate change
occurred in 2020, costing $58 billion. The economic burden was highest in California, Oregon, and
Washington. We suggest that absent abrupt changes in climate trajectories, land management, and
population, the indirect impacts of climate change on human-health through wildfire smoke will
escalate.

Climate change has driven the observed increase in frequency and intensity
of wildfires1–3, which produce substantial amounts of fine particulatematter
(wildfire PM2.5). Exposure to PM2.5 is a known cause of mortality and
cardiovascular disease and is linked to onset and worsening of respiratory
conditions4. Ongoing trends of increasing wildfire severity align with cli-
mate projections and underscore how climate change factors such as earlier
snowmelt, intensified heat waves5,6, and rising vapor pressure deficit7, have
already expanded forest fire extent8, accelerated daily fire growth rates9, and
enabled more extreme fire events10.

As climate change exacerbates wildfire risk, PM2.5 emissions from
wildfireshave surged, contributingnearlyhalf of thenational annual average
PM2.5 across theUS in recent years

11 and reversing air quality improvements
in several regions12. Economic and environmental impacts of wildfires on
both natural ecosystems and human communities will continue to increase
as climate warming intensifies and extreme events becomemore frequent13.
Although the connection between anthropogenic PM2.5 exposure and
mortality is well-documented14, our understanding of the health impacts of
wildfire PM2.5 attributable to anthropogenic climate change is limited.With

increasing wildfire activity driven by climate change1, there is a pressing
need to quantify the health consequences of subsequent increases inwildfire
PM2.5 concentrations.

Addressing this need requires attribution, a framework that deter-
mines the extent to which human activities, particularly the emissions of
greenhouse gases, are responsible for changes in environmental systems.
Climate attribution has already been used to link recent high profile fire
seasons to climate change. For example, during Black Summer, Aus-
tralia’s 2019–2020 bushfires burned an estimated 24 million hectares;
high-risk conditions conducive to widespread burning were at least 30
percent more likely due to climate warming15. More recently, the 2023
Canadian forest fires covered seven times the average annual area burned
compared to the previous four decades16,17, and climate change more than
doubled the likelihood of extreme fire weather conditions in Eastern and
Southwestern Canada18. In the western US, observed warming and
drying, particularly increased vapor pressure deficit (VPD), correlate
with increases in fuel aridity metrics and wildfire burn area (BA). These
trends have been linked to anthropogenic climate change in the western
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US and show a doubling of the burn area expected in the absence of
climate change1.

Here, we develop an attribution framework to assess the contribution
of anthropogenic climate change-related wildfire PM2.5 impacts on human
mortality on a county level across the contiguous US (CONUS) (Fig. 1; see
“Methods”). Our framework quantifies the effect of climate change on
human mortality by comparing observed wildfire PM2.5 with that from a
counterfactual climate scenario that excludes the direct influence of climate
change based on 20 climate models participating in CMIP619. We develop
ecoregion-level empirical models of annual burn area (BA) using fire
weather index (FWI) and precipitation fromERA520 acrossNorthAmerica.
These models are then forced by observed and counterfactual climates to
approximate the climate change contribution to BA at the ecoregion scale
annually. We then train a machine learning model to relate monthly mean
wildfire PM2.5 from published data11 to observed BA from MODIS (see
“Methods”) andmeteorological variables.Deploying the trainedmodelwith
historical and counterfactual BA simulations allows us to isolate wildfire
PM2.5 attributable to climate change. Using an extended shape constrained
health impact function and georeferenced data on recorded deaths in the
Environmental Benefits Mapping and Analysis Program Community
Edition model (Ben-MAP-CE)21 allows us to estimate mortality from
wildfire PM2.5 exposure.

Results
Wildfire burn area and wildfire PM2.5 attributable to
climate change
Observedwildfire burn area. Our longer record of observed wildfire BA
(2002–2023) shows temporal variability, with the highest total BA during
2020 across the study area (Fig. 2c, d).We find that approximately 40% of
BA occurred in primarily forest lands, and that forest BA significantly
increased by 62% (p = 0.06) during 2002–2023 while nonforest BA
declined by 6%. Results for broader North America are qualitatively
similar, albeit forest BA accounted for a majority of the total BA with the
highest total BA in 2023 influenced by the historical Canadian fire season
(Supplementary Fig. 1).

Climate change contributions towildfire burn area.We found that the
percent of burn area attributable to climate change is stronger in
flammability-limited forest lands and ecoregions that exhibit greater
sensitivity to FWI (Fig. 2, Supplementary Fig. 2, Supplementary Tables 1,
2). Themodels showed little predictive skill in the southeastern USwhere
there is more intentional fire that confounds climate-fire relationships
(Supplementary Fig. 3). Climate-BA relationships were stronger in the
western portions of the CONUS where there is more wildland, similar to
prior studies22,23.

Over the 2006–2020 period of overlap between the available datasets of
BA and wildfire PM2.5, we estimate that climate change resulted in 39.0%
more forest BAand13.3%morenonforest BA thanwouldhave happened in
its absence in the CONUS. The weaker influence of climate change on
nonforest BA is partially due to heightened importance of antecedent pre-
cipitation that augments fine fuel growth and fire potential in fuel-limited
fire regimes. Precipitation exhibits limited change under a counterfactual
climate scenario.

The highest smoke concentrations are found in the western portion of
the country, especially in the states of California, Oregon, Washington,
Idaho andMontana (Fig. 3a),where 25 to 60%of the average annualwildfire
PM2.5 in 2006–2020 can be attributed to climate change (Fig. 3b). Some
isolated regions, e.g., rural parts of theGreat Plains, showa slight decline, less
than 0.25 μgm−3, in average annual wildfire PM2.5, based on either a
negative relationship between FWI and monthly mean wildfire PM2.5 in
nonforest areas or intentional agricultural fires as well as prescribed burns.
For context, the World Health Organization sets acceptable total PM2.5

levels at 5 μg/m³ annually and 15 μg/m³ for a 24-h period24. Over the
2006–2020 analysis period, the climate change contributions to wildfire
PM2.5 were greater in more recent years (2017, 2018, and 2020) (Fig. 3c).

Wildfire PM2.5 mortality and economic burden
Mortality attributable to observed wildfire PM2.5. We estimate
between 3500 (95%CI 1700 to 5100) to 28,000 (95%CI 14,000 to 42,000)
wildfire PM2.5 attributable deaths per year between 2006 and 2020, with
the largest number of these deaths occurring in 2020 and a cumulative
total of 164,000 deaths over the 15 years. The annual average wildfire
PM2.5 mortality rate was 5.14 deaths per 100,000 population for the
CONUS between 2006 and 2020. We estimated the annual economic
burden of observed wildfire PM2.5 mortality to be between $31 billion
(95% CI 2.6–88) to $325 billion (95% CI 28–920). For comparison, tro-
pical cyclones result in 1.9–3.1 deaths per 100,000 annually in the US25

and have caused an average of $22.8 billion in damages per event.

Climatechangecontributions towildfirePM2.5mortality.We estimate
climate change contributed to approximately 15,000 wildfire PM2.5

deaths between 2006 and 2020 (Table 1, ca. 10% on average), with year-
to-year variability ranging from 130 (95% CI 64–190) to 5100 (95% CI
2500 to 7500) deaths, and greater contribution in more recent years
commensurate with the growing climate change signal (Figs. 4, 5). The
cumulative economic burden of climate change-related wildfire PM2.5

mortality was $160 billion (Table 1), with year-to-year costs ranging from
$1.2 (95% CI 0.1–3.4) to $58.0 (95% CI 5.0–170) billion. On average, the
annual rate of wildfire PM2.5 deaths attributable to climate change was
0.45 per 100,000 population between 2006 and 2020, with an average
economic burden of $11 billion annually. Approximately 34% of the
additional deaths attributable to climate change over the 15 years of our
study occurred in 2020 (Fig. 4).

On a state-level, Western US states experienced the highest annual
rates of climate change-related wildfire PM2.5 mortality and incurred the
highest economic costs between 2006–2020 (Table 2, Supplementary
Tables 3–5). In the western states of Oregon,Montana, Idaho,Washington,
California, and Nevada, the climate change contribution to total annual
wildfire PM2.5 mortality averaged across the 15 years was between 19 and
36% (Table 2, SupplementaryTable 4). On the county level, the ten counties
with the highest annualmortality rates from climate change-relatedwildfire
PM2.5 were all in the Western US, dominated by California and Oregon
(Table 3, Fig. 5, Supplementary Fig. 4, Supplementary Tables 6, 7). The
climate change contributions to total annual wildfire PM2.5 mortality
exceeded50% in12westernUScounties in2020, and ranged from40 to63%
in 66 counties (Supplementary Tables 6, 7).

Sensitivity analyses using different concentration response functions to
estimate the climate change contribution towildfirePM2.5mortality showed
similar direction andmagnitude (SupplementaryTable 8).Using theGlobal
Exposure Mortality Model (GEMM) concentration response function, we
estimate 13,000 climate change-related wildfire PM2.5 deaths between 2006
and 2020 in the CONUS, with a total economic burden of $144 billion.
Additionally, we apply the concentration response function from a long-
term PM2.5 mortality study26 and estimate 17,000 climate change related
wildfire PM2.5 deaths, with a total economic valuation of $186 billion.

Discussion
It is essential to reduce greenhouse gas emissions and associated impacts on
natural and human systems. Over the last half-century, climate change has
been a substantial driver of increased wildfire burn area in western US
forests27, which has generated additional PM2.5 pollution and negatively
impacted public health28. This is the first study to quantify the annual time-
varying impact of climate change on historical wildfire PM2.5mortality on a
state and county level across the contiguous US. Using our attribution
framework to document this excess mortality, we show that 15,000 of
164,000 wildfire PM2.5 related deaths (ca. 10%) from 2006 to 2020 are solely
attributable to climate change, corresponding to $160 billion of economic
damages.

Climate change-caused wildfire PM2.5 has a distinct spatial pattern,
with the highest concentrations, excessmortality, and economic damages in
the western US. Climate change accounts for up to 60% of the average
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annualwildfirePM2.5 in portionsofCalifornia,Oregon,Washington, Idaho,
and Montana. The contribution of climate change to excess deaths attri-
butable to wildfire PM2.5 also offers a potential area of intervention.

Mitigating climate change could reducewildfirePM2.5mortalitywith sizable
economic benefits. In a scenario without climate change contributing to
wildfire PM2.5, themortality reductions in theWestern USwould approach
those seen with the influenza vaccine, one of the most important public
health interventions29, though eliminating all global greenhouse emissions is
not as simple as developing a vaccine.

Understanding contributions of climate change to wildfire mortality
and its economic burden at the scale of higher-level administrative divisions
—counties across the CONUS—can identify hotspots of compounded
health risks and guide policies to protect disproportionately affected com-
munities. At the county-level, we find the ten most impacted counties—
located inCalifornia (4 of 10 counties), Idaho (1), Oregon (4), andMontana
(1)—exhibited climate change-caused wildfire PM2.5 excess mortality rates
ranging from 9.8 to 17.1 per 100,000 people. For comparison, the second
most leading cause of mortality in the US is cancer (malignant neoplasms)
withmortality rates of 17.5 (2021) and 18.5 (2022) per 100,000US standard
population30.

In addition to a clear spatial pattern, we find a trend of worsening
climate change-caused wildfire PM2.5 impacts in recent years. Across our
15-year record of excess mortality, the record 2020 fire season saw the
highest mortality and economic burden, with 5100 deaths from climate
change-caused wildfire PM2.5 and a $58 billion associated cost. The record
fire year 2020 alsomarked the beginning of the COVID-19 pandemic. Prior
studies have shown long-term PM2.5 exposure was associated with higher
COVID-19 mortality rates31. The recent trend of more adversarial public
health outcomes is expected to continue across the CONUS under multiple
future scenarios. For instance, one study32 projected 1300 additional deaths
by 2050 under a stabilized climate scenario and 1600 under a fossil-fuel
intensive scenario. Additionally, another study33 estimated that a 50%
increase in wildfire PM2.5 levels could result in 9–20 additional deaths per
100,000 adults aged 65 and older annually.

In the only comparable study28 to our knowledge, the authors show
approximately−6% to 35%ofwildfire PM2.5 deaths between 2000 and 2010
in the CONUSwere attributable to climate change, depending on the global
fire–vegetation model used. In that global study, regions were at the con-
tinent or subcontinent level, rather than the state and county level we report

Fig. 1 | Conceptual model of the approach to examine the contribution of
anthropogenic climate change towildfire PM2.5 and impacts on humanmortality
and economic burden. VPD is vapor pressure deficit. The Value of Statistical Life
(VSL) is the amount society is willing to pay to reduce the risk of prematuremortality
for one person, estimated at $11.6million (USD 2024). This value does not represent
the value of an individual’s life.

Fig. 2 | Spatial and temporal distribution of forest
and nonforest burn area and percent attributed to
anthropogenic climate change from 2002
through 2023. Cumulative percentage of (a) forest
and (b) nonforest burn area from 2002 to 2023
attributed to anthropogenic climate change (ACC),
defined as the percent difference of observed burned
area relative to counterfactual. Models with insuffi-
cient burn area for a given vegetation type are not
shaded. Time series of observed (red) and counter-
factual (gray) annual (c) forest and (d) nonforest
burn area summed over ecoregions that intersected
the CONUS. The black line shows the cumulative
burn area during the study period attribu-
table to ACC.
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Fig. 3 | Spatial and temporal distribution of the impact of climate change on
annual mean wildfire PM2.5 concentrations in the contiguous United States.
a The observed annual average wildfire PM2.5 between 2006 and 2020. b Annual
mean wildfire PM2.5 attributable to climate change between 2006 and 2020. This is
calculated by taking the difference between the counterfactual and the observed

concentrations. Positive values indicate where increased smoke levels are caused by
climate change. cAnnual time series of population-weighted observedwildfire PM2.5

(red) and counterfactual wildfire PM2.5 (gray) between 2006 and 2020 for
the CONUS.
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here. The 10% we find using our attribution framework is within the range
described by another study28 across their three global fire–vegetation
models. However, the wide range inmodel-specific outcomes highlights the
well-documented difficulties of fire–vegetation models in reproducing
observed trends in BA and the divergence in historical burn area
products28,34. Our approach, which uses observed BA, wildfire PM2.5 and
climate alongside a counterfactual provides increased credibility with
observed impacts.

While this study focuses on the impact of climate change on wildfire
PM2.5 mortality, we also present overall wildfire PM2.5 mortality and
associated economic burden in agreement with the current knowledge base.
Our estimate of 11,000 annual deaths (range: 3500–28,000) from wildfire
PM2.5 exposure is consistent with a study35 that reported an average of
11,415 deaths from 2007 to 2020. Other studies report similar ranges
(4080–28,000)36 and (8700–32,000)37, with variations due to differing

methodologies. Similarly, our estimated economic burden of $95 billion
(2024 USD) between 2008 and 2012 aligns with the $110.2 to 188.5 billion
(USD 2024) range reported across the same timeframe37, with differences
driven by year-to-year variability and regional wildfire activity.

Methodologically, our approach introduces several innovations,
including the explicit attribution of wildfire PM2.5 mortality to climate
change by using BA linked to climate change, a dynamic annual time series
rather than static or long-term windows28., and the ability to analyze across
multiple spatial scales from pixels to counties, and states. It also aligns with
established methodologies for health impact assessments21,37,38. However,
limitations warrant further investigation. Earth System Models (ESMs)
coupled with climate simulations could provide an alternative method for
quantifying the BA response to climate change. Such approaches can cap-
ture some of the indirect influence of climate change on BA including
increased biomass due to carbon dioxide fertilization and fire-fuel
feedbacks1 that are not in the empirical approach used here. However,
simulations of BA from ESMs massively overestimate fire extent across the
US partly due to the lack of scalable fire management39. There are uncer-
tainties in each analytical step from ACC to BA to PM2.5 to mortality. Our
confidence intervals focus on our primary outcome, wildfire PM2.5 mor-
tality.We include confidence intervals to account for uncertainties related to
our primary outcome, wildfire PM2.5 mortality. For this exercise, we argue
that a ground-truth empirical approach that uses observed BA and PM2.5

likely better represents reality.
We used a concentration-response function for long-term ambient

PM2.5 mortality as a surrogate for wildfire PM2.5 mortality. This assumes
similar health effects from long-termwildfirePM2.5 exposure and long-term
ambient PM2.5 exposure, even though wildfire PM2.5 concentrations are
highly variable, particularly during wildfire season40, unlike ambient PM2.5

concentrations that are typically stable across time. Only a few studies
conducted to date have attempted to examine the relationship between
longer duration smoke exposures (i.e., across years) and mortality. A
methodology that captures the dynamic smoke exposure’s frequency,
intensity, and duration has yet to be elucidated.While some evidence shows
that short-term (daily) exposures to wildfire PM2.5 may have more severe
health impacts (e.g., respiratory-related outcomes) than ambient PM2.5

40,41,
this epidemiologic and toxicologic literature is not robust. Few studies have
examined annual wildfire PM2.5 exposure and mortality and only two
studies modeled long-term exposure and premature death35,42. This means
that health impact assessments for wildfire smoke use concentration
response functions for ambient PM2.5 and mortality, which assumes that
PM2.5-related health effects are unchanged across different exposure pat-
terns.OurPM2.5 estimates arebasedona2.5° grid across the continentalUS,
with transboundary smoke and smoke transport from Canada factored in
only whenwithin a 500 kmneighborhood (see “Methods”). Given evidence
thatCanadian smoke impacts PM2.5 levels in thewesternUS

43, our estimates
ofwildfirePM2.5 exposure andmortality are likely conservative.Avenues for
future improvement of smoke modeling include higher resolution models,
explicitly accounting for out-of-sample smoke (e.g., Canadian wildfires in
2023), and incorporating more complex atmospheric transport and smoke
dispersion models.

A keymessage of themost recent Intergovernmental Panel onClimate
Change assessment, a central document of climate science and policy,
highlights howmore frequent and intense extreme events have led and will
continue to lead to “damages to nature and people, beyond natural climate
variability”44. Here we show that, had we eliminated the climate change
contribution to wildfire PM2.5 between 2006 and 2020, there likely would
have been 10% less mortality due to wildfire PM2.5 nationally, with even
greater reductionsof 30–50% in somewestern states and counties,while also
saving billions of dollars from avoidedmortality.Without efforts to address
climate change, the increasing burn area and wildfire PM2.5 trends will
continue as there is strong evidence that climate warming will continue to
increase45. By mid-century, projections of climate-driven wildfire PM2.5

across the CONUS indicate at least a 50% increase inmortality from smoke
relative to 2011–2020 with annual damages of $244 billion46. A study on

Table 1 | Annual climate change contribution to wildfire PM2.5
mortality and the associated economic burden

Year Climate change related wildfire
PM2.5 mortality
(95% CI)

Total economic burden in
billions USD 2024
(95% CI)

2006 180 (88, 260) 1.6 (0.13, 4.5)

2007 600 (300, 890) 5.5 (0.47, 16)

2008 650 (330, 960) 6.2 (0.53, 18)

2009 130 (64, 190) 1.2 (0.1, 3.4)

2010 150 (74, 220) 1.4 (0.12, 4)

2011 780 (390, 1200) 7.8 (0.67, 22)

2012 720 (360, 1100) 7.3 (0.62, 21)

2013 520 (260, 770) 5.4 (0.46, 15)

2014 340 (170, 510) 3.6 (0.31, 10)

2015 710 (360, 1100) 7.5 (0.64, 21)

2016 420 (210, 620) 4.4 (0.38, 13)

2017 1800 (920, 2700) 20 (1.7, 57)

2018 2200 (1100, 3300) 24 (2.1, 70)

2019 480 (240, 710) 5.4 (0.47, 15)

2020 5100 (2500, 7500) 58 (5, 170)

Total 15,000 deaths $160 billion
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economic impacts across theUS found that the greatest direct cost for global
mean surface temperature changes larger than 2.5 °C is the burden of excess
mortality, with sizable but smaller contributions from changes in labor
supply, energy demand, and agricultural production47. This highlights the
substantial impacts on nature that result in human deaths from failure to
reduce greenhouse gas emissions. It is imperative to understand the con-
sequences of climate change on wildfire PM2.5 and human health, and to
focus on reducing the economic burden on communities.

Methods
Wildfire burn area attributable to climate change
The monthly burn area fromMODIS (MCD64A1) was used from 2002 to
2023. We disaggregated burn area (BA) in forest and woodland areas (tree
cover >20%) from the nonforest areas (tree cover <20%), as there are dif-
ferent climate-fire relationships and emission factors per vegetation type48,49.
Though there are higher resolution fire data (e.g., MTBS50), we opted to use
MODIS data as these provide wall-to-wall coverage in the US and Canada
from a single consistent source. However, MODIS does not distinguish
betweenwildfires and other types of biomass burning.Hence, in parts of the
central and eastern US much of the BA is due to prescribed fire or agri-
cultural burning rather than wildfire, thus likely confounding climate-fire
relationships51.

The FireWeather Index (FWI) is an indicator of potentialfire intensity
calculated from meteorological data that accounts for the fuel dryness and

short-term fire weather. Two climate predictors are used based on past
studies that show that interannual variability inmacroscale BA is influenced
by both antecedent fine-fuel build-up in the prior year and fire weather
conditions during the fire season23. First, we used antecedent precipitation
from January-August during the prior year as a proxy for fuel biomass
accumulation to account for moisture that influences vegetation pro-
ductivity during the previous growing season22. Secondly, rather than apply
a fixed seasonal window for contemporary fire weather, we calculate the
annualmaximumof90-day averageFWI for eachpixel52.We chose a 90-day
window for average FWI that is flexible across years and ecoregions rather
than a prescribed window (e.g., Jun–Sep) as temporally varying windows
have higher correlative power to burned area48 and they account for the
geographic variations in core fire season across the study region. Daily
meteorological data were sourced from ERA5 at a 0.25° horizontal resolu-
tion. FWI was calculated using daily maximum temperature, daily mini-
mum relative humidity, daily accumulated precipitation, and daily mean
wind speed per prior analyses23.

Counterfactual climate data were developed using a simple
approach that removes the first-order influence of monthly temperature,
precipitation, humidity, and winds from the observed record1,53. This
approach preserves the temporal variability of the observed record, but
removes a low-pass filtered signal from climate models. While climate
variability may change due to anthropogenic forcing54, we focus on the
stronger, more robust, and direct influence of climate change on means.

Fig. 5 | County level mortality attributed to climate change related wildfire PM2.5 in the CONUS was highest in western counties between 2006 and 2020. Units are
annual average mortality per 100,000 population.
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Our approach follows previous work in developing counterfactuals that
adjust for first-order influence of climate change. We suggest that
potential change in climate variability is a topic for future work. We
examined the climate change signal using twenty climate models parti-
cipating in CMIP6 (Table S1) for the historical (1850–2014) and future
(SSP2-45, 2015–2100) forcing. Specifically, we calculate a low-pass fil-
tered signal for the 20-model mean for each location and month to the
pre-industrial baseline (1850–1900). These low-pass climate change
signals were subtracted from the observed (2000–2023) data to get a
single counterfactual void of the first-order climate change influence
following prior studies1. These data are then used to calculate a coun-
terfactual FWI and precipitation.

All climate and BAdatawere aggregated to EPA level II ecoregions, i.e.
assemblages of common vegetation and climate55. We conducted the BA
modeling at ecoregion scales as such regions are large enough tocapture top-
down climate drivers of BA as seen in prior studies22,56.

Separate empirical models were developed for each ecoregion for
annual forest BA and annual nonforest BA. These models take the simple
log-linear approach used in prior studies22 (Eq. (1)):

BAðtÞ ¼ αþ βFWIðtÞ90d þ γPðt � 1Þ þ ε

where FWI is the maximum 90-day mean FWI during the year, P is the
January-September year precipitation from the previous year, and ε

represents an error term. The error term ε is randomly pulled from the
residual of observed minus modeled without the error term and is
incorporated to account for stochastic factors not included in the simple
model27. Notably, this term is needed to account for underestimates in BA
given the log-linear framework and stochastic factors not included in the
model. We use these models to simulate both observed and counterfactual
BA. For the latter, we substitute the observed FWI and P for counterfactual
versions. Ecoregions that recorded <1 km2 BA for ≥ 25% of years were not
modeled due to insufficient burn area and their counterfactuals were set to
observed BA. Except for small ecoregions in southern Mexico, ecoregions
that were left unchanged had extremely low rates of annual burned fraction
(<0.00001% yr−1). Unchanged ecoregions accounted for <3% of BA in
forests and <2% of BA in nonforests across North America during
2002–2023.

Lastly, we use results from these models to produce counterfactual
BA estimates for forest and nonforest lands at a 0.25° spatial resolution
(23.5 by 23.5 km) and monthly scale. We first calculate the ratio of
modeled counterfactual to modeled observed data from equation 1 for
each year, separately for forest and nonforest BA by ecoregion. We spa-
tially and temporally disaggregate counterfactual BA for each ecoregion
by multiplying this ratio by the MODIS BA observations. This approach
thereby preserves the spatial and temporal variability in BA between
observed and counterfactual simulations, however, it does not capture any
shifts in BA seasonality.

Table 3 | Countieswith highest average annual climate change relatedwildfire PM2.5mortality rates per 100,000 population and
the average associated economic burden for the county between 2006 and 2020

Rank State County Average annual mortality from climate change
related wildfire PM2.5

(per 100,000 population)

Average annual mortality from climate
change related wildfire PM2.5

Average annual economic
burden
(millions USD 2024)

1 California Trinity 17 1.8 18.7

2 Oregon Josephine 17 11 116

3 California Siskiyou 13 4.2 45.4

4 Oregon Jackson 13 20 216

5 Oregon Curry 12 2.1 23

6 Oregon Douglas 12 9.3 103

7 California Shasta 11 14 156

8 California Del Norte 11 2.1 23.2

9 Idaho Idaho 10 1.2 12.9

10 Montana Ravalli 9.8 3.0 31.2

Counties with larger populations have higher burdens.

Table 2 | Top 10 states for climate change contribution to annual wildfire PM2.5 attributable mortality averaged across 2006 to
2020 and the state level economic valuation

Rank State Annual average mortality rate
related to climate change wildfire
PM2.5

(per 100,000 population)

Annual average mortality related
to climate change wildfire PM2.5

Climate change contribution to
total wildfire PM2.5 mortality (%)

Average annual
economic burden
(in millions USD 2024)

1 Oregon 4.9 130 36 1600

2 Montana 3.9 26 23 300

3 Idaho 2.7 27 21 310

4 Washington 2.2 100 27 1200

5 California 1.4 350 25 4100

6 Nevada 1.0 19 19 220

7 Wyoming 0.9 3.4 12 39

8 Colorado 0.6 22 13 260

9 Louisiana 0.4 12 6.5 130

10 Arkansas 0.4 7.3 4.1 80
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Wildfire PM2.5 attributable to climate change
Annual mean PM2.5 concentrations are estimated using amachine learning
approach that incorporates a basic model of atmospheric flow and varying
sources of wildfire smoke. Themodel is trained using published daily data11.
aggregated into annual averages on a 2.5o grid (277.5 by 277.5 km). Once
trained, the model is applied to the real and counterfactual burn area
datasets, one grid location at a time, to obtain gridded smoke estimates. The
proportional difference between these two datasets (observed and coun-
terfactual) is then obtained and used to scale the observed data during this
period to determine the final counterfactual estimate. See (Fig. 6) for a
schematic of the model described in this section.

A weighted sum of annual burn area within a reachable neighborhood
is used as model input in each grid cell. The burn area in forested and
nonforested areas is treated as independent inputs. Elevation data by
GEBCO57 are usedwith a shortest path algorithm to determine dynamically
reasonable regions from which smoke may propagate (for example, deep
valleys may influence the horizontal flow of wildfire smoke). These neigh-
borhoods are described by the spatial weights which are calculated using a
two-step process:
1. Distance weighting. Weights decrease with distance, using a

2-dimensional Gaussian curve. This means that wildfires at greater
distances contribute less to local smoke concentrations. The Gaussian
function takes the form (Equation 2):

e�D2=2σ2

Where D is distance in km and is the standard deviation (i.e., the parameter
which controls the width of the Gaussian surface). An iterative validation of
the model showed that D = 300 km provides good RMSE and correlations
across the analysis domain.
2. Connected regions. A second set of pairwise distances is calculated

using the Dijkstra shortest path algorithm58. To apply the algorithm,
the gridded locations are converted into a mathematical network,
where the centers of cells are nodes and edges are constructed by
connecting 8 neighboring nodes. The edges are assigned weights
according to the distance between their corresponding nodes.
Nodes are not connected where some elevation difference is

exceeded. The algorithm is applied three times, each for elevation
differences of 500m, 1000m and 1500m and the three resulting dis-
tance arrays are then averaged to obtain the final weights (Supple-
mentary Fig. 5).

Two machine learning algorithms are combined using a voting
regressor: XGBoost and Support Vector Regression. The XGBoost algo-
rithm (gradient boosting) obtains monotonic and non-linear relationships
between the inputs and annualmeanwildfire smoke. Incorporating support
vector regression into the framework allows for a smoother output and
improved extrapolation/interpolation in the regions of the parameter space
lacking observations. The model is trained to make predictions generalized
to the whole study grid by concatenating input data before training.
Hyperparameters for bothmodels are calibratedusinga randomsearchwith
5000 iterations and a fivefold cross validation to minimize the root mean
square error. Validation shows a correlation of 74% between observed and
modeled (out-of-sample) PM2.5 values.

The smoke model performs well, is computationally quick to run, and
incorporates a simple atmospheric flowmodel. However, there is scope for
improvement. A more complex smoke propagation and dispersion model
may better model more complex seasonally changing flows. For this study,
we investigated the use of local wind vectors from a reanalysis dataset but
found no improvement in the model output. However, using a fully
dynamic numerical model such as HYSPLIT to determine neighborhood
weights could provide better results, at the cost of computational resources.
A more complex atmospheric model could also allow the model to better
represent wildfire effects from further afield, beyond the 500 kmbox used in
this study. We found expanding this box in our model is detrimental to the
output, likely due to the aggregated complexity of the flow over these
distances.

Althoughnot explicitly included in thismodel, the transport ofwildfire
smoke can be sensitive to the injection height plume, which is impacted by
burn temperature and vegetation characteristics. By separating burned area
by forested and nonforested, some of this difference will be captured in a
statistical sense.However, future versions of thismodel should includemore
variability in vegetation characteristics and a more explicit inclusion of
injection height.

Fig. 6 | Schematic of statistical smoke estimation
approach. A combined machine learning model is
trained to predict annual mean wildfire PM2.5 at a
location as a function of forested and nonforested
burn area within some neighborhood. The model is
trained on observed data to predict smoke during
the counterfactual scenario.
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WildfirePM2.5 impacts onhumanmortality and economic burden
To estimate the contribution of climate change to annual wildfire smoke-
relatedmortality and the economic valuation, we use theUSEnvironmental
Protection Agency’s Environmental Benefits Mapping and Analysis Pro-
gram (BenMAP-CE)21 that incorporates a health impact function derived
from epidemiologic literature, baseline demographic and health data, and
the Value of Statistical Life (VSL).

For human health impacts, we quantify the number of wildfire PM2.5

related deaths using:

ΔY ¼ 1� e�β�ΔPM2:5ij
� � � Yoj � Popij

where ΔY is the change in mortality attributable to the contribution of
climate change to wildfire PM2.5, β is the risk coefficient, Δ PM2.5ij is the
difference between the counterfactual (without climate change) and the
observed concentrations for annualmeanwildfire PM2.5 in county i in year j
(2006, 2007,…,2020), Yoj is the baseline mortality rate in year j, and Popij is
the number of residents in county i in year j. Baseline rates for county level
all-cause mortality are obtained from the Centers for Disease Control
Wonder database.

A limited number of epidemiologic studies have attempted to examine
longer durationwildfire smoke exposure andmortality. It is well recognized
that longer duration smoke exposures are spatially and temporally dynamic,
varying in intensity, frequency, and duration40 within and across years.
Because of the small evidence base of studies examining longer duration
smoke exposures and overall uncertainties in the relationship with mor-
tality, within this analysis, we assume the relationships between annual
ambient PM2.5 and wildfire PM2.5 exposure and mortality are similar. This
assumption isbasedon thewell documented relationshipbetween long term
(i.e., annual average) ambient PM2.5 exposure and mortality14,59. Therefore,
we selected a published pooled risk estimate for long term ambient PM2.5

mortality60. to represent the relationship between wildfire PM2.5 and mor-
tality and derive our concentration response function. The study used a
random effects pooling technique to combine hazard ratios from 8 US,
Canadian, and European cohorts that included adults 65 years and
older. We use the study’s concentration response function60 derived for
ages 65+ reflects a similar response function for our study population
that includes ages 25–99. Our use of this study conforms to the 2024 US
Scientific Advisory Board recommendation to use a single probabilistic
mortality estimate based on pooled risk estimates with associated uncer-
tainty ranges.

We estimated economic valuation using the Value of Statistical Life
(VSL), a valuation function based on 26 published studies and used by
economists, the US EPA in Regulatory Impact Analyses, and US
Congress for policy analyses. VSL is the amount society is willing to pay
to reduce the risk of premature mortality for one person, estimated at
$11.6 million (USD 2024). This value does not represent the value of an
individual’s life. We apply a 3% discount rate similar to prior health
impact assessments37. Discount rates are used in cost benefit analyses to
account for economic benefits that occur over multiple years and reflect
the social concept that a health benefit today is more valuable than a
health benefit in the future. The estimated dollar value of wildfire related
impacts account for mortality alone. This estimate does not account for
morbidity impacts associated with exposure to fine particles, which
include an array of chronic effects like cerebrovascular events, and acute
effects like aggravated asthma. Thus, our dollar value is likely
underestimated.

Data availability
Data generated during and/or analyzed during the current study (data and
script for running climate-burn area model, and PM2.5) are available in the
Woodwell Climate Risk repository at https://github.com/WoodwellRisk/
law_comm-e-e. Data for mortality are available here: https://doi.org/10.
7910/DVN/OFAVXL and https://doi.org/10.7910/DVN/UPLVOI.

Code availability
BenMAP-CE code is available here: https://www.epa.gov/benmap/
benmap-40.
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