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Materials and Methods 

 

Forest Ecoregions 

 

We defined forest ecoregions by filtering the Olson/WWF terrestrial ecoregions of the world 

(57) dataset for tropical, temperate and boreal forest biomes (including broadleaf, coniferous or 

mixed forest types) plus ecoregions within the Mediterranean forest, woodlands and scrub biome 

whose names featured the keywords “forest” or “woodland”. We excluded ecoregions where the 

mean annual forest burned area (BA) fell below 0.01% of total forested area of the ecoregion based 

on MODIS BA data. 414 forest ecoregions were selected by these criteria. Abatzoglou et al. (ref. 

(54)) previously assessed the drivers of fire on an ecoregion level based on correlation analyses 

involving a subset of the variables used in our current study. 

 

Burned Area and Fire Emissions 

 

The burned area (BA) data used in the current study derive from the MODIS BA produced 

(MCD64A1 collection 6.1) at 500 m spatial resolution (58). The fire C emissions data derive from 

the global dataset of 500 m estimates of fire C emissions from van Wees et al. (ref. (59)), updated 

with BA driving data (58) through the year 2022.. These emissions estimates are in line with the 

Global Fire Emissions Database version 4.1s (ref. (134)) but better calibrated and available at far 

higher resolution (59), and also fully consistent with the BA dataset used in this work (58).  

Forest BA and forest fire C emissions were isolated from the total BA and total fire C 

emissions datasets using 250 m tree cover fractions from the MODIS vegetation continuous field 

product (MOD44B, collection 6.0) (67, 135), aggregated by spatial averaging from its native 250 m 

resolution to 500m resolution. Forest cells were defined by a tree cover threshold of 30%, which 

includes woody savannahs, woodlands and forests in the University of Maryland scheme (136) and 

has been among the most widely-used thresholds in previous work (95, 96, 137).  

Various satellite sensors and definitions of forest have been used to monitor change in forest 

cover globally, resulting in notable disagreements in the direction or magnitude of forest cover 

change between forest cover products (95–97). We note that the Global Forest Change product (138), 

based on Landsat data at 30m resolution, shows a net decline in forest cover across much of the 

northern extratropics, in contrast to the increased forest cover in the MODIS MOD44B product for 

extratropical pyromes (Table S1; note that the tree cover threshold for forests is 30% in the Global 

Forest Change product, as in the current study). Discrepancies between MODIS- and Landsat- based 

trends in forest cover have been noted in prior research spanning tropical, temperate and high-

latitude regions (95–97). Hence, our study consistently uses MODIS observations for forest BA, 

forest C emissions, and forest burnable area as well as the trends in these variables. It will become 

possible to conduct similar work with a fully compatible suite of Landsat products once global 

Landsat-based fire products with global coverage reach maturity (139). 

Values of ecoregion or pyrome-level annual BA (km2 year-1) or fire C emissions (kg C year-1) 

were calculated by spatially and temporally aggregating across months and within each spatial 

domain. The BA data cover years 2001-2023, while the fire C emissions data cover years 2002-2022. 

We extrapolated the ecoregion- and pyrome- level fire C emissions data to years 2001 and 2023 by 

multiplying the annual BA (km2 year-1) in 2001 and 2023 with the trendline-tracking values of fire C 

combustion rate (g C km-2 burned) for those years.  

Total burned area fraction (BAF) was calculated as the total BA divided by total burnable 

area, where burnable area excluded cells that are water bodies in the MODIS MCD64A1 product. 

Forest BAF was calculated as the forest BA divided by forest area (cells with >30% tree cover). 

Non-forest BAF was calculated as the non-forest BA divided by non-forest area (non-water cells 

with <30% tree cover).  



Total fire C combustion rate (g C m-2 burned) was calculated as total fire C emissions divided 

by BA, and forest fire C combustion rate (g C m-2 burned) was calculated as forest fire C emissions 

divided by forest BA. 

Trendlines were fitted to the time series of BA, BAF, fire C emissions, fire C combustion rate 

time series using Theil-Sen regression. Absolute changes during 2001-2023 were calculated by 

subtracting the trendline values in 2001 from trendline values in 2023. Relative changes were 

calculated conservatively as the absolute change divided by the period mean value, in line with prior 

work (6, 15). 

 

Fire Season and Growing Season Definitions 

 

We defined the fire season months for each ecoregion in a manner that accounts for fire 

seasons spanning two calendar years, as is often the case in the southern extratropics. Fire season 

months were defined as the 5-month period centred around the climatological peak in BA during 

2001-2023, but excluding any months with BA below 10% of the month with maximum BA in the 

climatology. Fire seasons that initiated in one year (e.g. November 2019) but extended into a second 

year (e.g. through March 2020) were associated with the primary year (2019 in the given example). 

We similarly defined the growing season months for each ecoregion based on normalised 

difference vegetation index (NDVI) data from MODIS MOD13A3 (65), collection 6.1. Growing 

season months were defined as the 5 months centred around the climatological peak in NDVI during 

2000-2023. The growing season is not constrained to calendar years and so respects the seasonal 

cycle of vegetation growth even if seasons span two calendar years.  

We matched fire seasons with prior growing seasons as follows. In cases where the 

climatological peak of BA occurs after or contemporaneously with the climatological peak of NDVI, 

we treat the growing season of the same year as the prior growing season. In cases where the 

climatological peak of BA precedes the climatological peak of NDVI, we treat the growing season of 

the year prior as the prior growing season (including NDVI data from the year 2000 for the growing 

season prior to 2001). 

 

Correlations between Burned Area and the Predictors 

 

Principles behind the Adopted Correlation Structures 

 

Each variable addressed in the sections that follow is treated as a predictor of forest BA in 

each ecoregion. Its influence on forest BA in each ecoregion is measured by correlation analysis, 

though the correlations take a variety of structural forms depending on whether the predictor co-

varies with forest BA across inter-annual fire seasons, across fire season months, or across space. 

The structure of each correlation analysis was chosen to capture the cause-and-effect relationship 

between the variables. We also operated within the limitations of the predictor datasets. For example, 

if the gridded data represented a single point in time then it was not possible to analyse a temporal 

correlation. The correlation structures applied to various groups of variables are detailed below.  

 

● Fire weather, atmospheric instability, and lightning activity: correlations with forest BA 

relate to the co-variation across all fire season months during 2001-2021 at the ecoregion level 

(i.e. up to five data values per year). This formulation is appropriate because the listed 

meteorological factors have contemporaneous controls on the potential for fire ignition and 

spread. Our approach is akin to that of Jones et al. (ref. (6)), but restricted to fire season months. 

● Soil moisture: correlations with forest BA relate to the inter-annual co-variation across fire 

seasons during 2001-2021 at the ecoregion level (i.e. one data value per year). This formulation 



is chosen because soil moisture tracks seasonal water surpluses or deficit (drought), whose 

effects on landscape flammability are cumulative across the fire season. Our approach is akin to 

that of Abatzoglou et al. (ref. (54)). 

● Vegetation productivity (NDVI): correlations with forest BA relate to the productivity during 

each prior growing season during 2001-2021 and the forest BA during the following fire season 

at the ecoregion level (i.e. one data value per year). Productivity is represented in our analysis by 

the mean NDVI value during the prior growing season. This formulation is chosen because the 

cumulative production of biomass, particularly herbaceous and soft plant tissues, during the 

growing season impacts the quantity of fuels available to burn during the following fire season. 

Our approach is akin to that of Abatzoglou et al. (ref. (54)), though we focus directly on a proxy 

for vegetation productivity (NDVI) rather than on precipitation in the growing season. 

● Human factors (population, cropland cover, pasture cover and road density): correlations 

with forest BA relate to the mean annual value of forest BA for each 0.05° cell in each ecoregion, 

and values representing the density of the variable in each 0.05° cell. The formulation is chosen 

because fire ignition and suppression related to human activities can be expected to follow the 

densities of those activities. Our approach is akin to that of Andela et al. (ref. (15)), though we 

work at a higher spatial resolution. 

● Other landscape factors (potential fuel loads and terrain ruggedness): correlations with 

forest BA relate to the mean annual value of forest BA for each 0.05° cell in each ecoregion, and 

values representing the potential fuel loads and terrain ruggedness in each 0.05° cell. The 

formulation is chosen because continuous time series of gridded values for these predictors were 

not available. Our spatial correlation approach is akin to that of Andela et al. (ref. (15)). 

 

In all cases, Spearman’s rank correlation coefficients are preferred to Pearson’s correlation 

coefficients as these are less sensitive to nonlinearities such as exponential relationships between BA 

and a predictor. 

We used BA as the target variable throughout our correlation analyses, and other observable 

fire properties were not considered. Previous research on classifying pyromes according to traits of 

the fire regime has included a wider collection of variables, such as fire counts from active fire 

products and mean fire sizes based on ‘fire atlas’ products (e.g. (72–75)). BA is among the most 

widely-studied aspects of fire regimes globally. As it is the product of fire counts and fire mean size, 

BA usefully integrates information from two of the other metrics that have been used most widely 

for delineating pyromes and we thus viewed BA as the first priority for the novel disaggregation of 

the pyromes by fire drivers presented here. A clustering analysis which includes observed 

relationships between fire predictors and individual fire characteristics would be a significant 

undertaking and may introduce challenges such as collinearity where fire counts (or other 

characteristics) correlate with burned area.  

 

Fire Weather Index 

 

The Canadian fire weather index (FWI) is one of several indices used internationally to rate 

overall fire danger (4). Its value is affected by variability in surface-level meteorological conditions 

(temperature, humidity, wind speed and 24-hour precipitation) and its variability is designed to 

represent the changing potential for fire to ignite, spread and consume fuel if an ignition occurred. 

FWI decreases with fuel moisture levels and increases with dry fuel availability. Variability in FWI 

often correlates with burned area in forest ecoregions and hence the FWI has proven to be a useful 

tool in anticipating and responding to elevated wildfire potential (6, 53). FWI has also been used as a 

metric of the potential for fires to spread upon ignition in various studies of climate change impacts 

on forest wildfire potential (6, 31). 



For each ecoregion, we calculated the correlation between the monthly mean values of FWI 

(4, 31) and monthly forest BA across all fire season months during 2001-2021. FWI data were 

collected from the ERA5 meteorological reanalysis FWI product at daily 0.25° spatial resolution 

(61). The monthly mean FWI for each ecoregion was calculated by first averaging the daily FWI 

values of each cell, and second averaging across all cells in the ecoregion. Monthly forest BA for 

each ecoregion was calculated by summing across all cells within the ecoregion. 

 

Atmospheric Instability (C-Haines Index) 

 

While fire weather relates to the potential for fire spread amongst a fuelbed due to surface-

level meteorology, atmospheric instability relates to the potential for erratic fire behaviour caused by 

deep and turbulent convection, which enhances fire spread, limits potential for suppression, and 

presents opportunities for neighbouring fire ignitions (35, 140–142). The continuous Haines index 

(CHI) rates the potential for extreme fire behaviour by accounting for lower tropospheric instability 

and dryness (35, 140–142). Higher values of the CHI indicate greater atmospheric instability and 

potential for vertical updrafts and extreme fire spread behaviour. Updrafts can also cause the uplift 

and redistribution of embers or firebrands with potential to ignite additional spotting fires. The most 

extreme manifestation of atmospheric instability is the formation of pyrocumulonimbus (PyroCb), 

which can generate dry lightning with potential to ignite additional fires. 

For each ecoregion, we calculated correlations between the monthly mean values of CHI and 

monthly forest BA across all fire season months during 2001-2021. 3-hourly CHI values were 

calculated at 0.25° spatial resolution using the 3-hourly data for temperature and dewpoint 

temperature at the 700 and 850 hPa pressure levels from the ERA5 reanalysis (143), and following 

the equations provided in refs. (35, 140). The monthly mean CHI for each ecoregion was calculated 

by first averaging the 3-hourly CHI values of each cell, and second averaging across all cells in the 

ecoregion. Monthly burned area for each ecoregion was calculated by summing across all cells 

within the ecoregion. 

 

Lightning Frequency 

 

Although human activities are the dominant ignition source in most locations occupied by 

humans, lightning can be an important ignition source in lesser-occupied areas and the dominant 

ignition source in remote locations (34, 44). Hence there is a clear connection between the 

prevalence of lightning and fire that is expected to strengthen with remoteness. 

We analysed the seasonal correlation between lightning flash count and monthly forest BA 

data across all fire season months during 2010-2021. Lightning observations derive from the 

Worldwide Lightning Location Network (WWLLN) (63) and include cloud-to-ground and cloud-to-

cloud lightning flashes. Cloud-to-ground lightning strikes are relevant for fire ignitions and have 

been found to scale with total lightning flashes in prior work (144). Lightning flash data were 

collected in vector format with spatial accuracy of around 5 km and a temporal accuracy on the scale 

of microseconds (63). Monthly lightning flash count was calculated by summing binning vector 

observations into cells within 0.25 degree cells. As the number of detectors in the WWLLN network 

has grown through time since 2010, the detection efficiency (DE) of lightning has increased and an 

increase in the number of lightning flashes has occurred (63). The WWLLN provides gridded 

detection efficiencies as a unitless fraction of the probability of detection in the current network 

(145). We corrected lightning flash counts using the average value of DE in that month.  

Monthly lightning flash counts for each ecoregion were calculated by summing across all 

cells within the ecoregion. Monthly forest BA for each ecoregion was calculated by summing across 

all cells within the ecoregion. 

 



Soil Moisture 

 

Soil moisture responds to seasonal balance of precipitation and evapotranspiration, increasing 

during periods of surplus precipitation and decreasing during periods of water deficit. Droughts or 

unusually dry periods during the fire season can place vegetation under moisture stress and 

eventually inhibit the vascular functioning of plants. The senescence and mortality of plants under 

drought stress leads to soft plant tissues (standing or debris) that are not supplied with water by the 

vascular system. These components can become particularly dry and flammable, especially towards 

the end of the fire season. Low soil moisture is used here as a proxy for the impacts of variability in 

seasonal water deficit or drought on the susceptibility of landscapes to fire. 

For each ecoregion, we calculated correlations between the mean soil moisture and burned 

area during the fire season. We collected monthly mean volumetric soil moisture content for the 

subsurface depth interval (7-28 cm) at 0.1° spatial resolution from the ERA5-Land dataset (62). 

Annual mean soil moisture values for each ecoregion were calculated by first averaging the soil 

moisture across fire season months in each cell, and second averaging all cells in the ecoregion. 

Annual forest BA during the fire season was calculated for each ecoregion by summing forest BA 

values across months and cells within the ecoregion. 

 

Vegetation Productivity 

 

It is well established that vegetation productivity and the build-up of biomass during the 

growing season influences fuel availability during subsequent fire seasons. While the effect is 

particularly noted in savannah grasslands (54, 146), variation in vegetation productivity has also 

been found to imprint on forest fire activity during subsequent fire seasons in some regions (147, 

148). Here, we used the normalised difference vegetation index (NDVI) to evaluate how vegetation 

vitality during the growing season influences fire in the following fire season. NDVI increases with 

leaf area and photosynthetic capacity and has been used widely as a proxy for vegetation greenness 

(149). 

For each ecoregion, we calculated correlations between the annual mean NDVI during 

growing season months and annual total burned area during the following fire season months. We 

collected NDVI data from the MODIS MOD13A3 (65), collection 6.1, at 1 km resolution with a 

monthly timestep. We calculated the annual mean growing season NDVI for each ecoregion by first 

averaging the monthly NDVI values across growing season months in each forested cell, and second 

averaging across all forested cells in the ecoregion. Annual forest BA during the fire season was 

calculated for each ecoregion by summing forest BA values across months and cells within the 

ecoregion.  

 

Potential Fuel Loads 

 

While NDVI is useful for tracking variability in the productivity of vegetation, fuel loads are 

also subject to biogeographical component of variation in fuel availability given the types of 

vegetation that grow in different climates and environmental settings. Here, we use data representing 

the potential fuel loads in each fuelbed stratum from a global fuel dataset (51). The Global Fuel 

Dataset is an extension of the US-based Fuel Characteristic Classification System (FCCS) (150) to 

include fuel loads for six fuelbed strata in each land cover category of each Olson biome. For natural 

land covers, potential fuel loads are the baseline quantities of fuel stored in various fuelbed strata in 

the climax community of any given land cover following all stages of vegetation succession. For 

croplands and managed grasslands, potential fuel loads are the baseline quantities of fuel stored at 

the typical point of burning. Spatial variability in fuel loads reflects the biogeographical component 

of variation in fuel availability in relation to land cover and biome. The data were constructed for use 



in global fire emissions models and fire behaviour models, but they were used in previous work to 

establish the relationship between forest BA and fuel availability alongside metrics of temporal 

variability in vegetation productivity (such as NDVI) (53). 

For each ecoregion, we calculated the spatial correlation between potential fuel loads and 

mean annual forest BA during the fire season for three classes of fuel: surface fuels, shrub fuels, and 

ladder/canopy fuels. Potential fuel load data were collected in tabular format from the global fuel 

dataset (52), spatially joined to ecoregion and land cover combinations, and gridded with spatial 

averaging to 0.05° cells (the resolution used in all spatial correlation analyses included in the current 

work). We considered surface fuel loads to be the sum of leaf litter, woody debris and herbaceous 

fuel classes of the global fuels dataset. Mean annual forest BA during the fire season was calculated 

by first summing forest BA within each 0.05° cell for each fire season, and second averaging across 

all fire seasons 2001-2021. The spatial correlations represent the co-variation of fuel load and forest 

BA across all 0.05° cells that occupy each ecoregion. 

 

Cropland and Pasture Cover 

 

Agricultural land use is known to have ranging impacts on fire prevalence in different parts 

of the world. In tropical forests, the incursion of agriculture tends to increase fire activity in 

otherwise inflammable landscapes by adding deforestation fires, pasture maintenance burns, crop 

residue burns, and escaped fires from unintentional or wanton ignitions (151). Elsewhere, 

agricultural land use has been associated with reduced forest fire activity due to incentives or legal 

obligations to protect high-value farmland, involvement of landowners in forest fire avoidance and 

suppression (152, 153). Here, we sought to capture spatial variability in the relationships between 

land use and fire using cropland and pasture data. 

For each ecoregion, we calculated the spatial correlation between cropland cover fraction and 

mean annual fire season BA. Cropland and grassland cover fraction data were collected from the 

MODIS MCD12Q1 product (67), collection 6.1, at 250m resolution with an annual time step. To 

convert grassland cover fraction to pasture cover fraction, we collected data from the Gridded 

Livestock of the World dataset (154), version 3, and created a mask for areas with livestock density 

over 1 livestock unit per km2. We followed guidelines from the Eurostat agency of the European 

Commission to standardise the stocking density of different livestock species (155). Grasslands with 

more than 1 livestock unit per km2 were treated as pastures. Mean annual cropland and pasture cover 

fractions were calculated by averaging the cover fractions of each 250m cell over the years 2001-

2021. The cropland and pasture cover fraction data were then resampled to 0.05° to match all spatial 

correlation analyses included in this work. Mean annual forest BA during the fire season was 

calculated by first summing forest BA within each 0.05° cell for each fire season, and second 

averaging across all fire seasons 2001-2021. The spatial correlations represent the co-variation of 

each land cover and forest BA across all 0.05° cells that occupy each ecoregion. 

 

Forest Continuity 

 

We conceptually refer to forest continuity as the inverse of fragmentation in forests. In 

tropical forests, forest fragmentation has been shown to increase fire due to increased forest edge 

length, which can enhance ventilation and rates of fuel drying while also increasing exposure to 

potential ignition sources from neighbouring land covers such as agriculture (48, 49). In dry or fire-

tolerant forests, it is conceivable that fragmentation has the opposite effect on fire, as seen in 

savannahs where the discontinuity of naturally fire-prone vegetation fuels can leads to slower fire 

spread or early extinction such as annual BA reduces in more fragmented areas (49). 

The forest continuity metric used in this work is the Forest Area Index (FAD) (156, 157), a 

landscape morphological index based on the proportion of forest pixels within a neighbourhood area. 



This algorithm uses a moving window to classify each pixel (at their original spatial resolution) of 

forest between 0% and 100% according to their density in relation to the neighbourhood pixels (non-

forest pixels). The index for continuity is inversely proportional to the landscape fragmentation. For 

example, forest pixels with >90% forest cover are highly continuous forests largely free of 

fragmentation (e.g., forests fully connected or core areas), and forest pixels assigned as <10% are 

highly fragmented forests in the highly fragmented landscape (e.g., forest fragments that are 

disconnected from other forest fragments). FAD has been used in recent work to assess the links 

between fragmentation and fire in the tropics (49). 

The forest mask used to run the FAD index in this study was based on the MOD44B 

(collection 6.0) product at 250m spatial resolution for the year 2010. Since the input image for the 

FAD index needs to be binary (forest foreground and fragmentation background) we used a threshold 

of 30% of forest cover from MOD44B to create a mask of forest and non-forest pixels. The FAD 

index was then applied to this mask with a moving window of 27 x 27 pixels of 250m using the 

GUIDOS Toolbox workbench module available at SEPAL (System for Earth Observation Data 

Access, Processing and Analysis for Land Monitoring) cloud-computing platform. 

 

Population 

 

People can either increase the number of unintentional or wanton fire ignitions on the 

landscape or reduce the extent of fires through ignition avoidance, modification of land cover, fuel 

management, and active firefighting. The balance of these effects varies according to societal and 

cultural relationships with fire, however in general fire prevalence increases with population at low 

population densities (in relatively undisturbed environments) and reduces with population at high 

populations densities (in heavily modified environments where there are efforts to protect homes, 

capital, and infrastructure) (53, 158). Here, we sought to capture spatial differences in the 

relationships between people and fire using population density data. 

For each ecoregion, we calculated the spatial correlation between population density and 

mean annual fire season BA. Population data for years 2005, 2010, 2015 and 2020 were collected 

from the Gridded Population of the World (GPW) dataset (159), version 4, at 1 km resolution. The 

population data were then resampled to 0.05° to match all spatial correlation analyses included in 

this work. Mean population density was calculated by averaging the population density of each 0.05° 

cell across the available years, matching the resolution of all spatial correlation analyses included in 

this work. Mean annual forest BA during the fire season was calculated by first summing forest BA 

within each 0.05° cell for each fire season, and second averaging across all fire seasons 2001-2021. 

The spatial correlations represent the co-variation of population density and forest BA across all 

0.05° cells that occupy each ecoregion. 

 

Road Density 

 

Roads offer important access points to vegetated landscapes and so it is common for fire 

ignition locations to cluster along roads (160, 161). Ignitions related to the improper disposal of 

cigarette butts, contact with hot vehicle components or flammable substances, and deforestation or 

arson are generally concentrated along transport routes. On the other hand, roads can inhibit the 

spread of fires by forming a barrier in the landscape and disrupting fuel continuity (162). Here, we 

sought to capture spatial differences in the relationships between landscape accessibility and fire 

using road density data. 

For each ecoregion, we calculated the spatial correlation between road density and mean 

annual fire season BA. Road location data were collected from the Global Roads Inventory Project 

dataset (69), version 4 (GRIP4). The GRIP4 database includes mapped roads from various state, 

open source, and commercial products up to the year 2018. The vector data from GRIP4 was used to 



calculate road density (km of road per km2 of grid cell area) on a grid with a spatial resolution of 

0.05°, to match all spatial correlation analyses included in this work. Mean annual forest BA during 

the fire season was calculated by first summing forest BA within each 0.05° cell for each fire season, 

and second averaging across all fire seasons 2001-2021. The spatial correlations represent the co-

variation of road density and forest BA across all 0.05° cells that occupy each ecoregion. 

 

Terrain Ruggedness 

 

Field observations and models of fluid dynamics show that fires spread upslope more rapidly 

and intensely than on flat or downslope segments (163, 164). In addition, channelling of wind along 

terrain corridors can fan the flames and enhance the intensity and spread of fires (165). Here, we use 

terrain ruggedness index (TRI) data from the Geomorpho90m dataset (70) to study the impact of 

terrain on fire. TRI is calculated as the sum of the absolute differences in elevation between a focal 

cell and each of its eight neighbours and replicated over a moving window of 3x3 cells. Values can 

range from zero on flat land to over 500 m in mountainous areas.  

For each ecoregion, we calculated the spatial correlation between the TRI and mean annual 

fire season BA. TRI values were collected from the Geomorpho90m dataset (70) at 90 m resolution. 

Geomorpho90m uses observations from the Monitoring of Earth Rotation and Intercomparison of the 

Techniques (MERIT) digital elevation model (DEM). The TRI data were resampled to 0.05° to 

match all spatial correlation analyses included in this work. Mean annual forest BA during the fire 

season was calculated by first summing forest BA within each 0.05° cell for each fire season, and 

second averaging across all fire seasons 2001-2021. The spatial correlations represent the co-

variation of population and forest BA across all 0.05° cells that occupy each ecoregion. 

 

Delineating the Global Pyromes 

 

We used k-means clustering to group the forest ecoregions that share a similar set of 

correlations with the variables discussed above. The input data to the k-means algorithm were the 

correlation values between forest BA and each variable for each of the 414 forest ecoregions. K-

means clustering is an unsupervised machine learning algorithm that iteratively partitions a dataset of 

cases into k clusters. Across iterations, each observation tends towards a nearest centroid in 

hyperdimensional space. The algorithm operates by minimising the distances between case values 

and cluster centroid values across all predictors variables. In this study, the clusters derived from k-

means clustering are termed pyromes, and the cases are ecoregions. All analyses were performed in 

R Statistics and relied principally on the packages NbClust, caret and cluster (available from the 

Comprehensive R Archive Network, CRAN, https://cran.r-project.org/). 

 

Preparation Steps 

 

Prior to performing the k-means clustering, we verified that excessive multicollinearity was 

not present amongst the input variables to ensure that the impact of certain variable sets on clustering 

outcomes was not inflated (Fig. S18).  

We used the caret package to transform the input correlations for each variable to a scale 

range of 0 to 1 using equation (1).  

 

(1) 𝑥′ =
𝑥𝑥 

𝑥 𝑥 
 

 

The transformation ensures that distances between cases are similar in all input variables and 

thus gives all variables a similar potential to influence the distance measures that are used by the 

clustering algorithm to calculate distance between cases to cluster centroids. This step was practical 

https://cran.r-project.org/


in our study because correlations between forest BA and meteorological variables tended to occupy a 

wider range of values than the various spatial correlations; without scaling, meteorological variables 

would have greater influence on the clustering outcomes than others, and a portion of the uneven 

influence could relate to differences in correlation structure. 

 

Clustering Analysis for Pyrome Delineation 

 

Although k-means clustering is an unsupervised approach, the number of clusters (k) must be 

user-defined. Numerous quantitative ratings and heuristic tests have been devised to aid in the 

selection of the optimal value of k, though none is considered a gold standard. We tested 27 common 

methods for identifying the optimal k using the NbClust package, which returns an optimal k for 

each method. We used majority rule across the 27 methods as the basis for selecting k=12. The 

clustering procedure itself was performed using the cluster package, which underpins the pyromes 

map shown in Fig. 1. 

 

Significant Differences in Fire Controls Across Pyromes 

 

After distinguishing the pyromes using k-means clustering, we conducted a statistical 

evaluation of the differences in the set of correlations exhibited by different pyromes. We plotted the 

distribution of correlations between forest BA and each predictor for each pyrome (Fig. 2). We also 

conducted analysis of variance (ANOVA) tests for significant differences in the correlation between 

forest BA and each fire driver across the pyromes. We observed significant differences across 

pyromes in the correlation between forest BA and all predictors variables.  

ANOVA tests were supplemented with Tukey Honest Significant Difference (Tukey HSD) 

post hoc tests for significant difference in the correlation between forest BA and each fire driver 

between all possible pairs of pyromes. A 95% confidence level was adopted in all tests. Significant 

differences in correlation were observed in 58% of pairwise comparisons, where each pairwise 

comparison is a comparison of the correlations between forest BA and a variable across two pyromes 

(Fig. S19).   

We also visualised differences between the components in a reduced number of dimensions 

using principal component analysis. Fig. S20 shows the separation of the pyromes along three 

principal components that explained the majority of the hyperdimensional variance of the dataset 

used in the k-means clustering analysis. Generally speaking, the pyromes show minimal overlap 

along at least one axis of the principal components. 

 

Propagation of Uncertainties through the Clustering Analysis 

 

Correlations between the predictors and BA underpin our derivation of the clusters. We note 

that uncertainties in the predictors and BA do not propagate formally through our correlation 

analyses to the fitting of pyromes using k-means clustering because uncertainties are incompletely 

characterised in most input datasets or uncertainty metrics are incompatible and cannot be combined. 

The key implication is that the set of correlation values observed across the 414 forest ecoregions 

contain random error stemming from uncertainties in both the predictor variables and BA and may 

vary spatially, with potential to spuriously influence some of the cluster assignments without formal 

uncertainty quantification. Below, we summarise the sources and magnitude of uncertainties for 

predictor variables especially where they may vary spatially, providing key uncertainty metrics 

wherever possible and otherwise qualitatively summarise the key sources of uncertainties. 

Uncertainties in BA are also discussed in following sections (see “Uncertainties in Burned Area and 

Carbon Emissions”) so as to provide a characterisation of all uncertainties that might influence our 

correlation analyses and therefore contribute to artefacts in the assignment of ecoregions to clusters. 



In spite of the uncertainties identified below, we note that these datasets have been routinely used in 

empirical and machine learning studies that focus on the prediction of BA and identified as effective 

predictors of fire on regional to global scales.  

 

● Fire Weather Index: Uncertainties in the ERA reanalysis process are only partially quantified. 

No formal quantification of FWI uncertainties was presented for the global product by Vitolo 

et al. (61). A multi-member ensemble is available for uncertainty analysis via the Copernicus 

data store, but those have only been used to assess uncertainty in FWI values for select 

regions (166).  

● Vegetation Productivity (NDVI): Uncertainties in NDVI are only partially characterised (64, 

167). Reflectance calibration uncertainty is estimated at ±0.01 VI units for NDVI under 

normal atmospheric conditions (visibility ≥ 20 km) with a 2% reflectance calibration 

uncertainty. To achieve desired VI accuracy levels, required calibration uncertainties are 

1.9% for NDVI for ±0.01 VI units, and 3.8% for ±0.02 VI units. Additionally, a 2 nm center 

wavelength shift results in an error of ±0.01 VI units for NDVI. For band-to-band 

coregistration error, a 20% error results in uncertainties of ±0.01 VI units for NDVI. No 

specific variation in these uncertainties across forest environments is highlighted in the 

Algorithm Theoretical Basis Document (ATBD) (167). 

● Atmospheric Instability (C-Haines Index): We calculated C-Haines Index values based on the 

ERA5 reanalysis data. No formal quantification of FWI uncertainties was presented for the 

global product by Vitolo et al. (61). In this work, we did not calculate the C-Haines Index for 

all members of the ERA5 ensemble and so uncertainty across the ensemble is not quantified. 

● Lightning Frequency: Lightning detection efficiency in the WWLLN depends on the 

detection of very low frequency waves by ground stations. Detection is affected by 

assumptions in calibrating attenuation rates and modelling ionospheric rebound (168). 

Detection efficiency varies globally, being lower in regions such as Africa where ground 

stations are sparse and higher VLF signal attenuates, resulting in fewer detected low-powered 

strokes. Spatial accuracy of the network varies from approximately 5-10 km, affecting the 

gridding of flashes at 0.25 degree resolution (see ref. (169)). Additionally, cloud-to-cloud and 

cloud-to-ground strokes are not disaggregated by the WWLLN and so our analysis does not 

specifically consider the ground-striking lightning relevant for fire ignitions nor spatial 

variation in the cloud-to-ground fraction. 

● Soil Moisture: Uncertainties in the ERA-Land reanalysis process are only partially quantified. 

As in ERA5, characterisation of uncertainties in ERA5-Land is possible via outputs from a 

multi-member ensemble, however the ensemble has not been used to quantify uncertainties in 

global-scale applications. ERA5-Land has shown high skill relative to other reanlysis 

products in representing field data from international soil moisture network mostly containing 

data from the northern mid-latitudes (170). In the case of ERA5-Land, uncertainties in the 

land surface model are not yet included in the multi-member ensemble (only the uncertainties 

in atmospheric parameters are represented) (62). 

● Cropland and Pasture Cover: Uncertainty in the MODIS Land Cover products (including 

MCD12Q1) arises from a range of preprocessing errors, persistent cloud cover, geolocation 

inaccuracies, topographic data errors, and algorithmic misclassifications (171). Persistent 

cloud cover can lead to data gaps, particularly over tropical forests, generating regional 

variation in uncertainty. Algorithmic misclassifications cause errors of omission and 

commission, varying by region, with challenges in heterogeneous landscapes. Validation 

accuracy typically reaches around 0.97 but varies regionally, with dense reference data like 

North America and Europe leading to higher performance than in other world regions. 

● Forest Continuity: Uncertainties in FAD, a proxy for forest continuity, are not formally 

quantified by the algorithm of ref. (156) and were not quantified by Rosan et al. (49). A key 



methodological choice is the selection of the number of pixels in the neighbourhood used to 

evaluate the density of forest cells at each cell location (49). Our choice of a 27 x 27 

neighbourhood follows previous work (49) and means that forest cover within ~6.25 km of a 

cell influences that cell’s FAD value; this was the option most consistent with the sub-grid 

spatial resolution of 0.05° adopted across all of our spatial correlation analyses. Other choices 

of neighbourhood size would influence FAD values and introduce uncertainty. An additional 

source of uncertainty in FAD is the forest cover layer used as input, which is based on 

MODIS land cover products (see discussion of uncertainties in the MODIS land cover 

products above). 

● Potential Fuel Loads: Uncertainties in fuel load could not be formally quantified by ref. (52) 

due to poor reference data, however key sources were discussed. The uncertainties in 

underlying datasets for generating fuelbeds and creating a global fuel map stem from multiple 

sources. These include using GlobCover and other land cover products with varying 

resolutions and accuracies. GlobCover in particular does not distinguish between certain 

forest types, necessitating additional regional sources that may be inconsistent with 

GlobCover. The application of FCCS typology to global settings adds uncertainty due to 

challenges in assigning an existing FCCS fuelbed to ecosystems beyond North America 

(150). 

● Population: Uncertainties in the GPW dataset were not formally quantified by ref. (159). 

National-level census data are not collected via a standardised protocol, challenging the 

process of integrating census data across jurisdictions. Therefore, GPW version 4 population 

grids are limited by the availability and quality of census data. The disaggregation of census 

jurisdictional units (e.g. counties) to grid cells is another potential source of uncertainty in 

GPW version 4. The disaggregation method adopted by the dataset, aerial-weighting, follows 

the assumption that the population of a grid cell is a function of the urban area within that cell 

(159). 

● Road Density: Road lengths vary across geospatial datasets of road locations such as GRIP 

(21.6 million km globally) and national statistical databases (e.g. the World Road Statistics 

database has a total road length of 32 million km) (69). This indicates that the coverage of 

GRIP could be improved, especially focusing on the better representation of local, unplanned, 

and unofficial roads (69). GRIP has good coverage in developed regions but underestimates 

road length and density in developing regions (69).  

● Terrain Ruggedness: Uncertainties in Geomorpho90m were not quantified by ref. (70), but 

they rely on three aspects: (i) computing the geomorphometric variables under distinct 

projections - WGS84 datum underestimates slope in the subarctic zone; (ii) the divergence 

among the most common geomorphometric layers obtained from Digital Elevation Models 

(MERIT-DEM and 3DEP-1) - differences are largest close to peak areas and smallest close to 

valley areas; and (iii) bias associated with the removal of tree height to calculate the Digital 

Terrain Model – the denser the vegetation, the higher the bias (70). 

 

Overall, the datasets used in our study and across many fields of climate and environmental 

sciences contain uncertainties that are rarely quantified. An attempt at full quantification of errors 

across all input datasets and propagation of those errors through our analysis is out of the scope of 

this study. We highlight that improved quantification of errors across these datasets would enable 

downpipe studies such as ours to better characterise their uncertainties, especially if uncertainties 

were expressed in a spatially-explicit manner. 

 

Uncertainties in Burned Area and Carbon Emissions 

 



Uncertainty in the C6 MCD64A1 product stems from regional differences in environmental 

conditions, the distribution and quality of reference data, the ability of the algorithm to apply to 

diverse landscapes, and specific challenges such as cloud cover, vegetation density, and mixed land 

cover types (58, 172). The primary measures of uncertainty magnitude are summarised through 

several metrics derived from confusion matrices, including overall accuracy (OA), omission error 

ratio (OE), and commission error ratio (CE). The sixth collection of MCD64A1 product shows an 

OA of 0.97, OE of 0.37, CE of 0.40 globally, improving on earlier collections (58). Regions with 

dense vegetation cover or persistent cloud cover experience higher omission errors due to challenges 

in detecting smaller or less intense fires (for example, low-intensity surface fires in forests). CE is 

generally greater in regions in which similar spectral characteristics are shared between burned and 

unburned areas, such as in the case of peatlands where dark surfaces and charred surfaces appear 

similar. The MCD64A1 BA product shows higher OA and lower OE in boreal forests, where burned 

areas are detectable for extended periods, than in tropical forest regions where high canopy cover 

often intersects with high cloud cover. 

Uncertainties in GFED 500 m (173) emissions estimates are a function of uncertainties in the 

satellite detection of fires and estimates of carbon consumed per unit area, both of which are 

resolution-dependent (134, 173, 174). Monte Carlo simulations revealed uncertainties of ±20–25% at 

1 standard deviation at global, annual carbon emissions in an earlier version of GFED (GFED3) 

(174). Uncertainty in a later versions of GFED (GFED4s) are considered to be on the same order as 

those of GFED3, with uncertainties in fuel consumption reduced by improved fuel consumption 

constraints from field data (175), but new uncertainties introduced by the addition of small fire 

detections that are challenging to validate due to sparse field data (174, 176). The GFED-500 m 

dataset further resolved key uncertainties in the GFED framework stemming from the spatial 

aggregation (to coarser resolution) of BA and other Earth Observations that drive GFED’s fuel 

model, primarily by reducing mismatch between field measurements and modelled values (177, 59). 

Various field studies of fire emissions have been used to validate the GFED modelling framework 

(e.g. (178, 179)).  

 

Supplementary Text 1: Assessment of Confidence in Cluster Assignment 

 

The case-level silhouette width statistic (180), a unitless measure of the similarity of a case to 

the observations in its own cluster (pyrome) relative to the observations in other clusters (pyromes), 

was used to quantify the ambiguity of the pyrome assignment for each ecoregion. The higher the 

silhouette width, the lesser ambiguity in the attribution of an ecoregion to a pyrome. Fig. S21 shows 

maps of the ecoregions whose silhouette widths were in the bottom 20% of all ecoregions signifying 

that they were clustered least robustly and Fig. S22 shows a confusion matrix for the same 

ecoregions. The confusion matrix also helps to identify the pyromes that are most regularly confused 

with one another.  

 

Forest ecoregions with the lowest silhouette widths are generally scattered across world 

regions. All continents feature ecoregions with ambiguous cluster assignment, and there is not a 

strong tendency for ambiguously-clustered regions to concentrate in particular world regions aside 

from their somewhat lower presence in Africa and Australia (Fig. S21). This suggests that the k-

means clustering algorithm did not introduce severe regional bias in its cluster assignment, with 

broadly even levels of ambiguity in the clustering across continents.  

 

One exception to the above is the Iberian peninsula, where low silhouette widths were 

consistently observed, suggesting that forest ecoregions in this region showed relatively low parity 

with other ecoregions of the world. The forest ecoregion spanning most of Spain (Iberian 

sclerophyllous and semi-deciduous forests) was assigned to pyrome ExTrop3, but the ambiguity in 



cluster assignment suggests that pyrome ExTropF1 may also be an appropriate assignment. In 

northern Spain, an ecoregion assigned to ExTropF1 (Cantabrian mixed forests) might rather be 

assigned to SubTropF2. A forest ecoregion in Southern Portugal (Southwest Iberian Mediterranean 

sclerophyllous and mixed forests) was assigned to pyrome SupZoF2, but might rather be assigned to 

SubTropF3.  

 

Amongst the pyromes, clustering ambiguity was greatest in pyromes SubTropF3, SupZoF1 

and SupZoF2 (Fig. S22) and lowest in Pyromes ExTropF1 and TropF1. The ambiguously-clustered 

ecoregions in pyrome SupZoF2 would most often be alternatively assigned to pyrome ExTropF1 or  

SubTropF3, while ecoregions of ecoregion SupZoF1 would most often be alternatively assigned to 

pyromes ExTropF1, ExTropF2 or ExTropF4. These patterns indicate that the ambiguously-clustered 

ecoregions of suppression zones could otherwise be placed in extratropical forest pyromes or dry 

forest where BA is most sensitive to bioclimatic controls. The ambiguously-clustered ecoregions of 

Pyrome SubTropF3 could otherwise be assigned to clusters ExTropF1 or ExTrop3, suggesting a 

level of confusion between the most climate-sensitive subtropical pyrome and with extratropical 

forests where BA shows varying degrees of sensitivity to climatic factors. 

 

Supplementary Text 2: Further Discussion of Pyrome Geography and Traits 

Pyromes in Extratropical Forests 

Pyromes ExTropF1 and ExTropF2 cover North American and Eurasian boreal forests, as well 

as some temperate forests and high-altitude parts of the tropics (Fig. 1). Forest BA correlates positively 

with fire weather and atmospheric instability and negatively with seasonal soil moisture, whereas 

forest BA does not correlate with population density, agricultural land cover, and road density (Fig. 2, 

Fig. S1). Hence, climatic factors primarily govern forest fire extent in pyromes ExTropF1 and 

ExTropF2, with human activities having a relatively weak impact compared to other pyromes. 

Pyrome ExTropF1 dominates in North American extratropics. A distinguishing trait of pyrome 

ExTropF1 is that forest BA positively correlates with lightning flash density (Fig. 2), indicating that 

lightning is an important ignition source in these areas (33, 34, 40, 106). Pyrome ExTropF2 prevails 

in the Eurasian extratropics. BA correlates positively with NDVI from the prior growing season (Fig. 

2), suggesting that climatic conditions that enhance vegetation growth during the prior growing season 

can later influence fire extent by providing additional fine fuels to burn (76, 77). 

Two other extratropical forest pyromes, ExTropF3 and ExTropF4, include boreal forests in 

Scandinavia and western Russia and temperate or subtropical forests in parts of North America, 

Europe, and China (Fig. 1). Forest BA correlates positively with fire weather in ExTropF3 and 

ExTropF4, although far less strongly than in pyrome ExTropF1 or ExTropF2 (especially in the case 

of ExTropF4; Fig. 2). In addition, no correlation is observed between forest BA and soil moisture in 

ExTropF4 (Fig. 2), indicating that fires are overall not sensitive to water deficits accumulated over the 

fire season and only weakly related to periods of fire weather. The general weakness of correlations 

between forest BA and the explanatory variables in pyromes ExTropF3 and ExTropF4 may relate to 

infrequent burning in these typically stable humid climates (Fig. S7, Table S1), which leads to low 

statistical power to detect relationships over a relatively short observational period of two decades. 

Pyromes in Tropical Forests 

Pyromes TropF1 and TropF2 are widespread in the tropical deforestation zones of Amazonia, 

the Congo, and equatorial islands of southeast Asia (Fig. 1). In both pyromes, forest BA is positively 

correlated with population density, road density, and the extent of agricultural land covers, while 

negatively correlated with forest continuity (Fig. 2). Forest BA also correlates positively with fire 

weather and negatively with soil moisture, highlighting the dependence of deforestation and 



degradation fires on appropriate meteorological conditions (78, 181). These relationships are 

consistent with a concentration of deforestation and degradation fires at forest edges near existing 

human land use, with peaks during drier parts of the fire season and during drought years (48, 79). 

Pyrome TropF1 is mainly found in Amazonia and the Congo (Fig. 1). It shows a particularly 

strong correlation between forest BA and pasture cover (Fig. 2), consistent with the pattern of forest 

loss in Amazonia whereby the expansion of cattle ranching typically drives initial forest clearing and 

cash crop agriculture later establishes on pasture land (80, 81). Meanwhile, pyrome TropF2 prevails 

in Sumatra, Kalimantan, Borneo, and the Guianas. In pyrome TropF2, correlations between forest BA 

and soil moisture are notably stronger than in pyrome TropF1, whereas correlations with population, 

roads, and pasture cover are weaker (Fig. 2). These differences suggest a more constrained window 

for fire in TropF2, consistent with the role of drought conditions in enabling peak fire activity in the 

peat forests of southeast Asia (79, 82). Outside of the tropics, pyrome TropF2 includes several forest 

ecoregions in southeast Russia (Fig. 1), a known global hotspot of extratropical forest fires linked to 

forestry operations (83). 

Pyrome TropF3 commonly maps to older deforestation frontiers in moist tropical forest 

ecoregions (Fig. 1), including in the Atlantic forests of Southeast Brazil, Veracruz forests of eastern 

Mexico, Guinean forests of West Africa, and the northern islands of southeast Asia (Fig. 1). Today, 

these forests are heavily fragmented, their human populations are high and agricultural land cover is 

extensive (83–85, 182). Forest BA correlates positively with fire weather and negatively with soil 

moisture, similar to pyromes TropF1 and TropF2. Despite the density of human ignition sources in 

TropF3, forest BA does not show a strong correlation with the densities of population or agriculture 

(Fig. 2), possibly due to a saturation of ignition sources in the pyrome. 

Pyromes in Subtropical Forests 

Pyromes SubTropF1, SubTropF2 and SubTropF3 are commonly placed in subtropical or dry 

tropical forest ecoregions (Fig. 1), including in northern Colombia, western Madagascar, northeast 

India, parts of mainland southeast Asia, Sri Lanka, the East African coastal mosaic, and interior parts 

of the Brazilian Atlantic forests. Forest BA correlates with forest continuity and potential fuel stocks 

(Fig. 2), consistent with limitations to fire spread caused by fragmentation or discontinuity in fire-

prone land covers such as savannahs and dry forests (15, 49).  

In pyromes SubTropF1 and SubTropF2, negative correlations are observed between forest BA 

and population density, cropland cover, and road density. These correlations, which are particularly 

strong in pyrome SubTropF2, suggest that the presence of agriculture and infrastructure in fire-prone 

landscapes reduces fire activity in fragmented areas of SubTropF1. In contrast, forest BA does not 

correlate with human activities in pyrome SubTropF3, suggesting that natural landscape factors 

affecting forest continuity, such as hillslope position with respect to the water table, may play a more 

significant role in limiting fire spread (15, 49). 

Pyromes SubTropF1, SubTropF2 and SubTropF3 exhibit positive correlations between forest 

BA and meteorological factors, indicating that fire is constrained to specific fire-prone weather 

conditions. However, the windows of opportunity differ between the two pyromes. In SubTropF1 and 

SubTropF2, forest BA correlates positively with fire weather and negatively with soil moisture, 

suggesting that fires are enabled by both seasonal-scale moisture deficits and shorter periods of 

elevated fire weather. On the other hand, forest BA in SubTropF3 correlates only with fire weather, 

indicating a sensitivity to fire-prone weather spells but not to seasonal-scale moisture deficits. Forest 

BA shows a positive correlation with lightning frequency in pyrome SubTropF2, suggesting that 

lightning is an important ignition source in this pyrome. 

Pyromes in Zones of Fire Suppression 

The final two pyromes, SupZoF1 and SupZoF2, are found in various forest ecoregions of the 

tropics, subtropics, and temperate climate zones (Fig. 1). Negative correlations are observed between 



forest BA and population density, road density, and agriculture (Fig. 2), indicating that the presence 

of people and human activities dampens forest fire extent in these pyromes (46, 86). Land management 

practices influencing forest continuity and fire spread may also play a role, as indicated by positive 

correlations between forest BA and forest continuity and fire spread (Fig. 2). Moreover, positive 

correlations between forest BA and topographical complexity suggest that fires tend to occur in upland 

landscapes with fewer human activities, making them logistically challenging to suppress and of lower 

priority for suppression efforts (46, 87). 

Pyromes SupZoF1 and SupZoF2 prevail in many parts of the world where there are substantial 

budgets for wildland fire management and efforts to suppress forest fires, including the southeast US 

(SupZoF1), western US (SupZoF2), southeast Australia (SupZoF1 and SupZoF2), western Australia 

(SupZoF1), and parts of Iberia (SupZoF2). A range of practices contribute to the reduction of forest 

fire extent in these regions, including the suppression of active fires, management of fuel loads, and 

community programs aimed at reducing accidental ignitions and arson (46, 88).  

Correlations are observed between forest BA and both fire weather and seasonal soil moisture 

in pyromes SupZoF1 and SupZoF2, though these are notably stronger in pyrome SupZoF2 (Fig. 2). 

These correlations indicate that forest fires can emerge during periods of fire-prone weather, which 

can occur despite efforts to suppress fire (37, 89). In pyrome SupZoF1, forest BA shows a positive 

correlation with lightning frequency, highlighting the importance of natural ignitions as observed in 

some of its ecoregions, such as in southeast Australia (91). Also in pyrome SupZoF1, a distinctive 

correlation is observed between forest BA and vegetation productivity during the prior growing season, 

emphasizing the role of fuel production as a control on fire extent (9, 42, 91).  



Supplementary Figures 

 

 
Figure S1: Variation in the relationship between forest burned area (BA) and all predictors across the 

global forest pyromes. The violins plot the kernel density distribution of correlations values 

(spearman’s ρ) for each predictor amongst the constituent ecoregions of each pyrome. White dots 

mark the median correlation value for the ecoregions of a pyrome, black line ranges mark the 

interquartile range, and open diamonds mark the mean value. See Methods for a description of all 

correlation analyses and the motivation for including each predictor. Correlations are mapped for 

each forest ecoregion in Fig. S2.  



 
Figure S2: Spearman’s correlation (ρ) values between forest burned area (BA) and 14 predictors contributing to 

variability in forest BA for all forest ecoregions of the world. The predictors are each included as indicators of the 

meteorological, human and bioclimatic controls on fire activity. See Methods for a description of all correlation 

analyses and the motivation for including each predictor. The distribution of correlations amongst the ecoregions of 

each pyrome are mapped in Fig. 2.  



 
Figure S3: Changes in forest burned area (BA), forest area (spatial extent), and burned area fraction in forests for 

each pyrome during 2001-2023. Changes in forest area can partially contribute to increases in the forest BA via 

increased area available to burn. Increases in burned area fraction in forests indicate that increases in forest BA are 

proportionally larger than the increases in forest area. Forest BA corresponds to burned areas in cells where tree 

cover exceeds 30% at a spatial resolution of 500m (see Methods). 

  



 
Figure S4: Changes to the forest fraction of total (forest + non-forest) burned area (BA) and the forest fraction of 

total fire carbon (C) emissions during 2001-2023.  



 
Figure S5: Changes in the total (forest + non-forest) burned area (BA) and associated fire carbon (C) emissions 

during 2001-2023. The figure replicates Fig. 3, but with data relating to total BA and C emissions. See caption of 

Fig. 3 for panel-specific information.  



 
Figure S6: Average values of and changes in total (forest + non-forest) burned area and forest burned area for each 

ecoregion during the period 2001-2023. 



 
Figure S7: Average values of total (forest + non-forest) burned area fraction (BAF) and forest BAF for each 

ecoregion during the period 2001-2023, alongside a breakdown of values by pyrome. The violins represent the 

kernel density of the ecoregion count at each correlation value. White dots mark the median value for the 

ecoregions of a pyrome, while black line ranges mark the interquartile range and open diamonds mark the mean 

value. 

  



 

 
Figure S8: Average values of fire return interval (FRI) for total fires (forest + non-forest) and forest fires for each 

ecoregion during the period 2001-2023, alongside a breakdown of values by pyrome. Fire return interval is 

calculated as the inverse of burned area fraction (Fig. S7). The violins represent the kernel density of the ecoregion 

count at each correlation value. White dots mark the median value for the ecoregions of a pyrome, while black line 

ranges mark the interquartile range and open diamonds mark the mean value.  



 

 
Figure S9: Average values of and changes in total (forest + non-forest) fire carbon (C) emissions and forest fire C 

emissions for each ecoregion during the period 2001-2023. 



 
Figure S10: Average values and change in the total (forest + non-forest) fire carbon (C) emissions and forest fire C 

emissions per unit burned area for each ecoregion during the period 2001-2023, alongside a breakdown of values 

by pyrome. The violins represent the kernel density of the ecoregion count at each correlation value. White dots 

mark the median value for the ecoregions of a pyrome, while black line ranges mark the interquartile range and 

open diamonds mark the mean value. 

  



 
Figure S11: Relative changes in total (forest + non-forest) burned area (BA), forest BA, total fire carbon (C) 

emissions and forest fire C emissions during 2001-2023, alongside a breakdown of values by pyrome. The violins 

represent the kernel density of the ecoregion count at each correlation value. White dots mark the median value for 

the ecoregions of a pyrome, while black line ranges mark the interquartile range and open diamonds mark the mean 

value. 

  



 

 
Figure S12: Average values and change in the forest fraction of total (forest + non-forest) burned area (BA) and 

total fire carbon (C) emissions for each ecoregion during the period 2001-2023, alongside a breakdown of values 

by pyrome. The violins represent the kernel density of the ecoregion count at each correlation value. White dots 

mark the median value for the ecoregions of a pyrome, while black line ranges mark the interquartile range and 

open diamonds mark the mean value. 

  



 

 
Figure S13: Average values and change in fire weather index (FWI) during fire seasons for each ecoregion during 

the period 2001-2023, alongside a breakdown of values by pyrome. The FWI value of individual fire seasons is 

calculated as the mean value during fire season months; the average values shown are the mean across multiple fire 

seasons. The violins represent the kernel density of the ecoregion count at each correlation value. White dots mark 

the median value for the ecoregions of a pyrome, while black line ranges mark the interquartile range and open 

diamonds mark the mean value.  



 
Figure S14: Average values and change in fire season days with 95th percentile fire weather for each ecoregion 

during the period 2001-2023, alongside a breakdown of values by pyrome. Fire season days with 95th percentile fire 

weather are those days exceeding the 95th percentile value of all days during 1980-2009. The violins represent the 

kernel density of the ecoregion count at each correlation value. White dots mark the median value for the 

ecoregions of a pyrome, while black line ranges mark the interquartile range and open diamonds mark the mean 

value. 



 
Figure S15: Average values and change in soil moisture content during fire seasons for each ecoregion during the 

period 2001-2023, alongside a breakdown of values by pyrome. The soil moisture value of individual fire seasons 

is calculated as the mean value during fire season months; the average values shown are the mean across multiple 

fire seasons. The violins represent the kernel density of the ecoregion count at each correlation value. White dots 

mark the median value for the ecoregions of a pyrome, while black line ranges mark the interquartile range and 

open diamonds mark the mean value.  



 
Figure S16: Average values and change in normalised difference vegetation index (NDVI) during prior growing 

seasons for each ecoregion during the period 2001-2023, alongside a breakdown of values by pyrome. The NDVI 

of individual fire seasons is calculated as the mean value during fire season months; the average values shown are 

the mean across multiple fire seasons. The violins represent the kernel density of the ecoregion count at each 

correlation value. White dots mark the median value for the ecoregions of a pyrome, while black line ranges mark 

the interquartile range and open diamonds mark the mean value.  



 
Figure S17: Average values and change in lightning flash density during the fire season for each ecoregion during 

the period 2010-2021, alongside a breakdown of values by pyrome. The violins represent the kernel density of the 

ecoregion count at each correlation value. White dots mark the median value for the ecoregions of a pyrome, while 

black line ranges mark the interquartile range and open diamonds mark the mean value.  



 
Figure S18: Covariance matrix of the variables used as input to the k-means clustering algorithm.  

 



 
Figure S19: Pairwise differences in the value of each variable used in the k-mean clustering by pyrome, based on 

the distribution of values in the constituent ecoregions of each pyrome. Each panel shows one variable as indicated 

at the top of the page. Significant differences (p<0.05) are identified according to Tukey HSD posthoc tests. 

ANOVA tests revealed significant differences across the pyromes for all variables (p<0.05).  



 
Figure S19 (cont). 
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Figure S19 (cont). 

 

  



 
Figure S20: Separation of the pyromes along three components explaining the majority of the hyperdimensional 

variance in the input data, based on principal component analysis.  



 
Figure S21: Map showing an alternative mapping of the pyromes for the 20% of ecoregions that were clustered 

least robustly (i.e. the ecoregions whose affinity to their alternative cluster is most similar to that of their selected 

cluster, and thus where their fit to the selected cluster is most ambiguous). (a) shows a replica of Fig. 1 from the 

main text. (b) shows a mask of the ecoregions that were clustered least robustly (highlighted in pink). (c) shows the 

effect of replacing the selected pyromes with the best alternative pyrome. Fig. S22 shows a summary of the 

confusion between selected pyromes and alternative pyromes for the least robust cases.  



 
Figure S22: Confusion plot showing the association between the pyromes selected for each ecoregions and the best 

alternative pyrome, according to the k-means clustering algorithm. The plot includes the 20% of ecoregions that 

were clustered least robustly (i.e. the ecoregions whose affinity to their alternative pyrome is most similar to that of 

their selected pyrome, and thus where their fit to the selected pyrome is most ambiguous).



Supplementary Tables 

Table S1: Summary statistics for a range of variables related to burnable area, burned area (BA), burned area fraction (BAF), fire return interval (FRI), fire C 

emissions, and fire C combustion rate (C emissions per unit BA). 

Variable ExTropF1 ExTropF2 ExTrop3 ExTropF4 SubTropF1 SubTropF2 SubTropF3 TropF1 TropF2 TropF3 SupZoF1 SupZoF2 ALL FOREST 
ECOREGIONS 

Ecoregion Count                           
# Ecoregions 46 48 40 45 27 22 24 26 37 43 25 31 414 

Total Burnable Area                           
Total Burnable Area (thousand km2 year-1) 9106 9109 5540 2552 1259 2125 757 5281 3020 3052 1920 1690 45411 

Fraction of Global Forest Ecoregion Area in Pyrome (%) 20 20 12 6 3 5 2 12 7 7 4 4   
Forest Burnable Area                           

Mean Forest Burnable Area (thousand km2) 4652 3528 3345 977 508 751 138 4681 2376 1286 464 595 23302 
Absolute Change in Forest Burnable Area (thousand km2) 867 1042 505 76 40 42 5 -118 210 20 5 -15 2547 

Relative Change in Forest Burnable Area (%) 19 30 15 8 8 6 4 -3 9 2 1 -2 11 
Significance of Change in Forest Burnable Area *** *** *** *** *** ***   *** *** *   * *** 

Pyrome Fraction of Global Forest Burnable Area (%) 20 15 14 4 2 3 1 20 10 6 2 3   
# Ecoregions of Pyrome with Increased Forest Burnable Area 42 39 35 33 20 13 14 7 24 27 18 14   

of which significant 37 36 30 33 14 9 10 6 22 18 11 10   
# Ecoregions of Pyrome with Decreased Forest Burnable Area 4 6 5 10 6 7 10 19 11 16 8 13   

of which significant 2 4 3 5 4 6 3 14 8 10 6 9   
Forest Cover Fraction                           

Mean Forest Cover Fraction in Pyrome (%) 51 39 60 38 40 35 18 89 79 42 24 35 51 
Relative Change in Forest Cover Fraction (%) 19 30 15 8 8 6 4 -3 9 2 1 -2 11 

Significance of Change in Forest Cover Fraction *** *** *** *** *** ***   *** *** *   * *** 

Total Burned Area                           
Mean Annual Total BA (thousand km2 year-1) 41 72 13 12 20 61 54 71 30 73 56 32 536 

Absolute Change in Total BA (thousand km2 year-1) -12 43 -12 3 -4 1 -13 4 -23 -44 -12 -2 -90 
Relative Change in Total BA (%) -28 60 -86 27 -22 1 -25 5 -76 -61 -20 -8 -17 

Significance of Change in Total BA   *** *** * ***   ***   *** *** ***   *** 

Pyrome Fraction of Global Total BA (%) 8 13 3 2 4 11 10 13 6 14 11 6   
Pyrome Fraction of Global Gross Increases in Total BA (%)   85   6   2   8           
Pyrome Fraction of Global Gross Decreases in Total BA (%) 10   10   4   11   19 36 9 2   

# Ecoregions of Pyrome with Increased Total BA 19 28 5 18 8 14 8 12 7 16 13 14   
of which significant 11 20 2 7 5 5 5 5 4 8 5 3   

# Ecoregions of Pyrome with Decreased Total BA 25 16 25 21 18 8 16 13 28 26 12 16   
of which significant 12 10 18 10 13 5 14 8 22 19 5 11   

Forest Burned Area                           
Mean Annual Forest BA (thousand km2 year-1) 19 21 3 1 4 23 10 22 13 20 7 12 156 

Absolute Change in Forest BA (thousand km2 year-1) 6 35 -2 1 -1 -6 -3 4 -7 -10 1 2 19 
Relative Change in Forest BA (%) 30 167 -46 40 -32 -25 -26 19 -56 -50 8 18 12 

Significance of Change in Forest BA *** *** ** *** ***   ** * *** ***   . * 



Variable ExTropF1 ExTropF2 ExTrop3 ExTropF4 SubTropF1 SubTropF2 SubTropF3 TropF1 TropF2 TropF3 SupZoF1 SupZoF2 ALL FOREST 
ECOREGIONS 

Pyrome Fraction of Global Forest BA (%) 12 13 2 1 3 15 6 14 8 13 4 8   
Pyrome Fraction of Global Gross Increases in Forest BA (%) 12 72   1       9     1 5   
Pyrome Fraction of Global Gross Decreases in Forest BA (%)     5   5 20 9   26 35       

# Ecoregions of Pyrome with Increased Forest BA 25 29 9 16 10 12 9 17 6 17 12 19   
of which significant 17 26 2 8 4 5 5 7 4 8 8 10   

# Ecoregions of Pyrome with Decreased Forest BA 19 9 17 9 15 10 13 8 29 22 10 10   
of which significant 7 2 10 1 12 2 11 4 13 13 4 4   

Forest Fraction of Total Burned Area                           
Forest Fraction of Total BA in Pyrome (%) 45 27 25 12 20 36 18 31 43 27 12 39 29 

Absolute Change in Forest Fraction of Total BA in Pyrome (%) 26 32 10 5 -5 -5 0 4 0 3 2 12 9 
Relative Change in Forest Fraction of Total BA in Pyrome (%) 58 117 39 42 -24 -13 1 14 0 9 20 30 30 

Significance of Change in Forest Fraction of Total BA in Pyrome *** *** *** *** **     ***     * *** *** 
# Ecoregions of Pyrome with Increased Forest Fraction of Total Burned 

Area 33 32 18 20 14 9 11 17 20 26 11 22   

of which significant 23 27 13 13 8 8 6 12 16 17 8 16   
# Ecoregions of Pyrome with Decreased Forest Fraction of Total Burned 

Area 10 7 8 5 10 13 11 8 14 14 14 7   

of which significant 4 4 2 1 5 8 6 2 9 7 6 2   
Total Burned Area Fraction                           
Mean Annual Total BAF (%) 0.45 0.79 0.24 0.46 1.61 2.89 7.10 1.35 0.99 2.38 2.94 1.88 1.18 

Relative Change in Total BAF (%) -28 60 -86 27 -22 1 -25 5 -76 -61 -20 -8 -17 
Significance of Change in Total BAF   *** *** * ***   ***   *** *** ***   *** 

Mean Total BAF in Ecoregions of Pyrome (%) 0.73 1.17 0.41 0.43 1.34 2.67 4.58 1.09 1.29 2.62 2.89 3.18   
Median Total BAF in Ecoregions of Pyrome (%) 0.29 0.45 0.14 0.11 0.63 1.66 2.04 0.76 0.36 1.52 1.17 1.27   

Mean Relative Change in Total BAF in Ecoregions of Pyrome (%) -8 10 -47 -9 -22 11 -33 0 -31 -20 7 -14   
Median Relative Change in Total BAF in Ecoregions of Pyrome (%) -2 12 -19 0 -20 11 -24 0 -24 -16 1 -20   

# Ecoregions of Pyrome with Increased Total BAF 19 28 5 18 8 14 8 12 7 16 13 14   
of which significant 11 20 2 7 5 5 5 5 4 8 5 3   

# Ecoregions of Pyrome with Decreased Total BAF 25 16 25 21 18 8 16 13 28 26 12 16   
of which significant 12 10 18 10 13 5 14 8 22 19 5 11   

Forest Burned Area Fraction                           
Mean Annual Forest BAF (%) 0.40 0.56 0.10 0.14 0.81 3.03 7.02 0.48 0.55 1.56 1.49 2.10 0.67 

Relative Change in Forest BAF (%) 9 158 -56 33 -39 -26 -28 20 -63 -48 9 21 -2 
Significance of Change in Forest BAF * *** *** *** *** * *** * *** ***   *   

Mean Forest BAF in Ecoregions of Pyrome (%) 0.57 0.96 0.23 0.26 1.01 2.74 3.57 0.43 0.81 1.72 1.92 3.24   
Median Forest BAF in Ecoregions of Pyrome (%) 0.26 0.24 0.11 0.09 0.56 2.24 1.61 0.37 0.16 0.63 1.41 1.20   

Mean Relative Change in Forest BAF in Ecoregions of Pyrome (%) 4 22 -25 8 -13 2 -20 15 -21 -9 0 11   
Median Relative Change in Forest BAF in Ecoregions of Pyrome (%) 2 15 -1 0 -18 9 -4 10 -18 -5 0 8   

# Ecoregions of Pyrome with Increased Forest BAF 24 29 7 18 10 12 9 17 7 16 12 17   
of which significant 15 23 1 8 3 3 3 7 3 9 7 10   



Variable ExTropF1 ExTropF2 ExTrop3 ExTropF4 SubTropF1 SubTropF2 SubTropF3 TropF1 TropF2 TropF3 SupZoF1 SupZoF2 ALL FOREST 
ECOREGIONS 

# Ecoregions of Pyrome with Decreased Forest BAF 19 9 19 11 17 10 13 8 30 24 11 12   
of which significant 7 3 10 1 12 5 8 3 16 13 4 4   

Total Fire Return Interval                           
Mean Total FRI of Pyrome (years) 222 127 411 218 62 35 14 74 101 42 34 53   

Mean Total FRI of ecoregions in pyrome (years) 433 580 1012 1357 289 108 176 318 349 241 189 112   
Median Total FRI of ecoregions in pyrome (years) 341 223 694 870 159 60 50 131 277 66 86 79   

Forest Fire Return Interval                           
Mean Forest FRI of Pyrome (years) 249 177 997 717 123 33 14 209 182 64 67 48   

Mean Forest FRI of ecoregions in pyrome (years) 683 857 1563 1356 407 82 263 576 701 514 163 123   
Median Forest FRI of ecoregions in pyrome (years) 378 417 951 1070 178 45 63 270 620 159 72 85   

Total Fire C Emissions                           
Mean Total Fire C Emissions (Tg C year-1) 91 129 6 4 14 37 23 67 52 47 27 27 524 

Absolute Change in Total Fire C Emissions (Tg C year-1) -16 155 -4 1 -6 -3 -4 9 -53 -14 6 10 94 
Relative Change in Total Fire C Emissions (%) -18 120 -67 29 -43 -7 -17 13 -102 -31 21 36 18 

Significance of Change in Total Fire C Emissions   *** *** *** ***   ***   *** * *** *** * 

Pyrome Fraction of Global Total Fire C Emissions (%) 17 25 1 1 3 7 4 13 10 9 5 5   
Pyrome Fraction of Global Gross Increases in Total Fire C Emissions (%)   86   1       5     3 5   

Pyrome Fraction of Global Gross Decreases in Total Fire C Emissions 
(%) 16   4   6 3 4   53 14       

# Ecoregions of Pyrome with Increased Total C Emissions 17 30 5 14 8 9 9 12 6 15 16 17   
of which significant 5 20 0 7 3 3 4 7 3 8 8 3   

# Ecoregions of Pyrome with Decreased Total C Emissions  27 14 26 26 19 13 15 14 31 27 10 13   
of which significant 13 4 21 9 12 9 11 8 21 13 5 6   

Forest Fire C Emissions                           
Mean Forest Fire C Emissions (Tg C year-1) 47 60 2 1 6 20 7 43 28 24 9 16 263 

Absolute Change in Forest Fire C Emissions (Tg C year-1) 30 116 -1 1 -3 0 -2 24 -26 -5 4 7 157 
Relative Change in Forest Fire C Emissions (%) 65 194 -26 76 -52 -2 -25 56 -96 -19 44 43 60 

Significance of Change in Forest Fire C Emissions *** ***   *** **   *** *** ***   *** *** *** 

Pyrome Fraction of Global Forest Fire C Emissions (%) 18 23 1 0 2 7 3 16 10 9 4 6   
Pyrome Fraction of Global Gross Increases in Forest Fire C Emissions 

(%) 17 64   1       13     2 4   
Pyrome Fraction of Global Gross Decreases in Forest Fire C Emissions 

(%)     2   9 1 5   71 13       

# Ecoregions of Pyrome with Increased Forest C Emissions  20 30 7 16 10 10 7 12 6 17 13 18   
of which significant 11 25 2 9 4 1 3 7 4 7 9 9   

# Ecoregions of Pyrome with Decreased Forest C Emissions  23 9 19 13 17 12 15 13 31 25 11 12   
of which significant 8 2 12 2 10 9 11 6 22 13 4 2   

Forest Fraction of Fire C Emissions                           
Forest Fraction of Total C Emissions in Pyrome (%) 51 41 40 27 44 51 32 62 55 50 31 57 49 

Absolute Change in Forest Fraction of Total C Emissions in Pyrome (%) 43 44 15 21 -11 -7 -4 21 15 8 13 11 24 
Relative Change in Forest Fraction of Total C Emissions in Pyrome (%) 84 107 38 79 -25 -13 -13 34 28 16 42 19 49 



Variable ExTropF1 ExTropF2 ExTrop3 ExTropF4 SubTropF1 SubTropF2 SubTropF3 TropF1 TropF2 TropF3 SupZoF1 SupZoF2 ALL FOREST 
ECOREGIONS 

Significance of Change in Forest Fraction of Total C Emissions in 
Pyrome *** *** *** *** *     *** *** * *** *** *** 

# Ecoregions of Pyrome with Increased Forest Fraction of Total C 
Emissions 33 34 14 22 17 10 9 17 14 25 11 18   

of which significant 22 25 8 15 5 5 4 11 9 17 5 10   
# Ecoregions of Pyrome with Decreased Forest Fraction of Total C 

Emissions 10 7 11 7 10 12 13 9 20 17 12 11   

of which significant 5 2 5 1 8 8 5 2 9 9 4 3   
Total Fire C Combustion Rate                           

Mean Total Fire C Emissions per unit BA (g C m-2) 2174 1694 448 378 693 598 427 923 1650 641 479 814 979 
Absolute Change in Total Fire C Emissions per unit BA (g C m-2) 3 992 55 40 -54 -34 28 140 -934 109 145 363 327 

Relative Change in Total Fire C Emissions per unit BA (%) 0 59 12 11 -8 -6 7 15 -57 17 30 45 33 
Significance of Change in Total Fire C Emissions per unit BA   *** *** .     *** * *** *** *** *** *** 

Mean Total Fire C Emissions per Unit BA in Ecoregions of Pyrome (g C 
m-2) 1429 852 610 544 1016 628 419 1008 1529 631 790 752   

Median Total Fire C Emissions per Unit BA in Ecoregions of Pyrome (g C 
m-2) 987 457 396 405 627 585 378 975 989 475 682 689   

Mean Relative Change in Total Fire C Emissions per Unit BA in 
Ecoregions of Pyrome (%) 9 28 -2 10 -2 -8 10 16 -4 6 13 27   

Median Relative Change in Total Fire C Emissions per Unit BA in 
Ecoregions of Pyrome (%) 10 20 0 5 6 -3 10 6 -4 8 4 22   

# Ecoregions of Pyrome with Increased Total Fire C Emissions per Unit 
BA 26 33 17 26 17 10 14 19 14 27 15 23   

of which significant 14 28 9 15 6 5 11 11 8 17 11 20   
# Ecoregions of Pyrome with Decreased Total Fire C Emissions per Unit 

BA 18 12 16 14 9 12 10 6 21 15 11 7   

of which significant 9 7 6 7 4 6 6 5 12 9 3 4   
Forest Fire C Combustion Rate                           

Mean Forest Fire C Emissions per unit BA (g C m-2) 2390 2586 738 849 1523 856 749 1846 2055 1193 1238 1176 1663 
Absolute Change in Forest Fire C Emissions per unit BA (g C m-2) 810 1510 30 371 9 11 -49 584 -936 317 978 436 775 

Relative Change in Forest Fire C Emissions per unit BA (%) 34 58 4 44 1 1 -7 32 -46 27 79 37 47 
Significance of Change in Forest Fire C Emissions per unit BA *** *** . ***     . *** *** *** *** *** *** 

Mean Forest Fire C Emissions per Unit BA in Ecoregions of Pyrome (g C 
m-2) 1587 962 705 603 1273 888 659 1521 1801 941 1090 1092   

Median Forest Fire C Emissions per Unit BA in Ecoregions of Pyrome (g 
C m-2) 1204 604 504 446 895 870 612 1461 1295 767 876 970   

Mean Relative Change in Forest Fire C Emissions per Unit BA in 
Ecoregions of Pyrome (%) 12 30 -10 15 -7 -7 10 23 -12 7 17 20   

Median Relative Change in Forest Fire C Emissions per Unit BA in 
Ecoregions of Pyrome (%) 10 20 0 0 -10 0 0 16 -13 5 8 22   

# Ecoregions of Pyrome with Increased Forest Fire C Emissions per Unit 
BA 25 31 10 19 10 11 11 21 10 25 17 21   

of which significant 14 23 6 11 8 4 9 16 7 17 11 17   
# Ecoregions of Pyrome with Decreased Forest Fire C Emissions per 

Unit BA 18 8 17 12 17 11 11 4 26 17 5 8   
of which significant 7 5 8 0 9 5 8 3 13 9 2 5   

  



Table S2: Summary statistics describing the mean annual values of several climate variables for each pyrome and their change during the period 

2001-2023 (2010-2021 for lightning density). The values shown are the mean or median values of the stated variable across all constituent 

ecoregions of each pyrome, as indicated in the square parentheses. The number of ecoregions with increasing or decreasing trends are also 

shown for each variable. The distributions of values across ecoregions for each pyrome are shown in Fig. S13-S17. 
Variable Statistic ExTropF1 ExTropF2 ExTrop3 ExTropF4 SubTropF1 SubTropF2 SubTropF3 TropF1 TropF2 TropF3 SupZoF1 SupZoF2  

Ecoregion Count                           
# Ecoregions Count of ecoregions 46 48 40 45 27 22 24 26 37 43 25 31 

Extreme Fire Weather Days (FWI95d) during the Fire Season (95th 
Percentile Days)                           

Mean Annual FWI95d (days year-1)  Mean across 
ecoregions 18 18 13 14 16 14 16 25 16 18 15 21 

Mean Annual FWI95d (days year-1)  Median across 
ecoregions 18 19 12 11 17 14 16 24 14 19 14 20 

Absolute Change in Annual FWI95d (days year-1)  Mean across 
ecoregions 2 5 1 4 2 -4 2 15 2 5 2 7 

Absolute Change in Annual FWI95d (days year-1)  Median across 
ecoregions 2 6 -1 1 0 -4 -2 12 -1 2 0 5 

Relative Change in Annual FWI95d (%)  Mean across 
ecoregions 9 26 -3 15 2 -25 -6 47 -4 19 2 23 

Relative Change in Annual FWI95d (%)  Median across 
ecoregions 12 31 -12 13 -1 -26 -13 60 -10 11 3 26 

# Ecoregions of Pyrome with Increased FWI95d Count of ecoregions 24 30 16 25 10 4 10 18 13 24 13 21 
of which significant Count of ecoregions 16 20 10 15 6 0 5 17 6 12 6 12 

# Ecoregions of Pyrome with Decreased FWI95d Count of ecoregions 21 16 19 16 10 18 12 7 17 15 12 9 
of which significant Count of ecoregions 7 6 7 5 5 8 7 1 9 4 6 3 

Normalised Difference Vegetation Index during the Growing Season                           

Mean Annual NDVI (unitless)  Mean across 
ecoregions 0.64 0.60 0.65 0.61 0.68 0.65 0.63 0.76 0.72 0.68 0.62 0.62 

Mean Annual NDVI (unitless)  Median across 
ecoregions 0.65 0.61 0.67 0.63 0.68 0.65 0.65 0.76 0.74 0.70 0.62 0.64 

Absolute Change in Annual NDVI (unitless)  Mean across 
ecoregions 0.03 0.03 0.04 0.04 0.02 0.05 0.03 0.01 0.02 0.02 0.04 0.02 

Absolute Change in Annual NDVI (unitless)  Median across 
ecoregions 0.03 0.02 0.04 0.04 0.02 0.05 0.02 0.01 0.02 0.02 0.03 0.02 

Relative Change in Annual NDVI (%)  Mean across 
ecoregions 4.7 4.5 5.7 6.7 2.9 8.3 4.5 1.1 2.7 2.9 6.1 4.2 

Relative Change in Annual NDVI (%)  Median across 
ecoregions 3.8 3.9 5.4 5.8 2.7 8.2 3.2 1.1 2.4 2.5 5.0 2.9 

# Ecoregions of Pyrome with Increased NDVI Count of ecoregions 45 44 37 42 21 22 21 20 34 39 23 26 
of which significant Count of ecoregions 44 43 35 39 19 22 20 19 31 38 23 24 

# Ecoregions of Pyrome with Decreased NDVI Count of ecoregions 1 3 3 3 6 0 3 6 3 4 3 4 
of which significant Count of ecoregions 0 0 1 0 0 0 0 1 1 0 1 2 

Soil Moisture Content during the Fire Season                           

Mean Annual Soil Moisture (m3 water m-3 soil)  Mean across 
ecoregions 0.319 0.310 0.331 0.300 0.313 0.280 0.265 0.364 0.365 0.320 0.235 0.258 

Mean Annual Soil Moisture (m3 water m-3 soil)  Median across 
ecoregions 0.303 0.306 0.341 0.326 0.326 0.279 0.260 0.367 0.370 0.320 0.222 0.257 

Absolute Change in Annual Soil Moisture (m3 water m-3 soil)  Mean across 
ecoregions -0.001 -0.009 0.009 0.000 0.009 0.001 0.000 -0.018 0.008 -0.001 0.003 -0.004 

Absolute Change in Annual Soil Moisture (m3 water m-3 soil)  Median across 
ecoregions 0.000 -0.005 0.005 0.000 0.007 0.000 0.003 -0.015 0.010 -0.001 -0.001 -0.005 

Relative Change in Annual Soil Moisture (%)  Mean across 
ecoregions -0.3 -2.8 2.5 -0.5 3.3 0.5 0.4 -5.2 2.1 -0.3 1.0 -1.5 

Relative Change in Annual Soil Moisture (%)  Median across 
ecoregions 0.1 -1.7 1.5 -0.2 2.9 0.0 1.1 -3.7 3.1 -0.4 0.0 -2.1 

# Ecoregions of Pyrome with Increased Soil Moisture Count of ecoregions 24 15 28 21 17 11 14 6 22 19 13 10 



Variable Statistic ExTropF1 ExTropF2 ExTrop3 ExTropF4 SubTropF1 SubTropF2 SubTropF3 TropF1 TropF2 TropF3 SupZoF1 SupZoF2  
of which significant Count of ecoregions 8 3 13 9 10 3 5 1 18 6 6 1 

# Ecoregions of Pyrome with Decreased Soil Moisture Count of ecoregions 22 33 12 24 10 11 10 20 15 24 13 20 
of which significant Count of ecoregions 8 20 5 11 5 2 5 17 7 11 6 7 

Lightning Density during the Fire Season (2010-2021 only)                           

Mean Annual Lightning Density (flashes km-2 year-1)  Mean across 
ecoregions 0.204 0.185 0.248 0.165 1.086 0.371 0.478 0.478 0.688 0.729 0.347 0.905 

Mean Annual Lightning Density (flashes km-2 year-1)  Median across 
ecoregions 0.064 0.061 0.087 0.028 0.802 0.324 0.200 0.432 0.342 0.552 0.107 0.324 

Absolute Change in Annual Lightning Density (flashes km-2 year-1)  Mean across 
ecoregions 0.052 0.083 0.019 0.046 -0.077 -0.004 0.141 0.118 -0.129 0.074 0.050 -0.001 

Absolute Change in Annual Lightning Density (flashes km-2  year-1)  Median across 
ecoregions 0.019 0.012 0.007 0.002 -0.056 0.055 0.019 0.093 -0.021 0.002 0.011 0.031 

Relative Change in Annual Lightning Density (%)  Mean across 
ecoregions 53.9 39.3 38.4 32.9 -17.2 15.9 11.8 18.0 -3.7 7.1 10.9 15.4 

Relative Change in Annual Lightning Density (%)  Median across 
ecoregions 64.9 43.3 56.7 27.9 -17.8 11.4 12.3 18.8 -10.3 2.4 17.8 12.3 

# Ecoregions of Pyrome with Increased Lightning Density Count of ecoregions 36 35 25 27 11 14 17 20 15 23 16 19 
of which significant Count of ecoregions 25 22 18 14 3 7 3 8 6 7 7 3 

# Ecoregions of Pyrome with Decreased Lightning Density Count of ecoregions 10 12 15 16 16 8 7 6 22 20 10 11 
of which significant Count of ecoregions 3 5 4 2 9 4 2 3 7 5 4 3 
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