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E N V I R O N M E N TA L  S T U D I E S

Global expansion of wildland-urban interface 
intensifies human exposure to wildfire risk in the 
21st century
Yongxuan Guo1,2†, Jianghao Wang1,2*†, Yong Ge3,4, Chenghu Zhou1,2

Rapidly increasing human-nature interactions exacerbate the risk of exposure to wildfires for human society. The 
wildland-urban interface (WUI) represents the nexus of human-nature interactions, where the risk of exposure to 
natural hazards such as wildfire is most pronounced. However, quantifying long-term global WUI change and the 
corresponding driving factors at fine resolution remain challenging. Here, we mapped and analyzed the global 
WUI at 30-meter resolution in 2000, 2010, and 2020. Our analysis revealed that the global WUI expanded by 35.6% 
since 2000, reaching 1.93 million square kilometer in 2020. Notably, 85% of this growth occurred between 2010 
and 2020. The increase in WUI was primarily driven by the unprecedented expansion of global urbanization, con-
tributing an additional 589,914 square kilometer of WUI. In addition, the number of small fires occurring in WUI 
areas has increased substantially since 2010. These findings underscore the rising wildfire risk to human society 
and highlight the urgency of implementing tailored fire management strategies in WUI areas.

INTRODUCTION
The interactions between humans and the natural environment have 
increased exponentially in the Anthropocene (1). While remote ar-
eas may be indirectly affected by teleconnections resulting from 
human-caused climate change (2, 3), the most immediate conflicts 
and mutual impacts between human society and Earth system are 
concentrated in areas where urban border and wildland meet (4–6), 
an area known as the wildland-urban interface (WUI). The WUI is 
appealing area for people due to its proximity to nature. This prox-
imity carries a high risk of exposure to natural hazards such as 
floods, landslides (6), and wildfire (7).

Along with frequent droughts and heatwaves (8), the past two 
decades have witnessed a substantial increase in the occurrence of 
extreme and large wildfires (9, 10). These fires have a detrimental 
impact on human health (11–14), society (15, 16), and the economy 
(17, 18). Therefore, wildfires demand particular attention among all 
natural hazards in the WUI. The WUI offers a unique opportunity 
to observe the complex interactions between humans and wildfires, 
given the presence of sufficient fuel intermixed with urban areas. 
People living in or in proximity to WUI areas face an elevated mor-
tality risk due to exposure to flames and the heat of wildfires (13, 19). 
Wildfire-related smoke can result in an increase in the risk of illness 
and death in more distant areas, with studies indicating that this risk 
extends up to 1000 km away (13, 20, 21). Moreover, the fire regime 
in the WUI is predominantly influenced by human activities. A 
large proportion of wildfires in the WUI originate from human igni-
tions (7, 22), such as campfires and cigarette butts, while landscape 
fragmentation caused by man-made structures limits the extent of 
wildfires (23). Furthermore, the WUI is the area where the most 
intensive fire management policies have been implemented (24), 

and fire-prone regions have witnessed an increasing expenditure on 
fire suppression (17, 19). Given the frequency of disastrous wildfires 
in the WUI, it is of great importance to study how and why the WUI 
has changed globally, with a view to preventing and managing dan-
gerous wildfires.

Previous studies have primarily concentrated on mapping the 
distribution of WUI areas (7, 25–30) or modeling fires in the WUI 
(31–33), with particular emphasis on fire-prone developed regions, 
such as the United States (17, 28), Canada, and southern Europe 
(29). The advent of high-resolution satellite imagery has facilitated 
the mapping of WUI distributions at finer resolutions (28, 34–36). 
Recently developed global WUI maps have demonstrated the wide-
spread distribution of WUI areas across continents in 2020 (6, 37). 
While the rapid growth of WUI areas and the subsequent fire expo-
sure risk have been revealed at local (7) and global scales (37), the 
existing multiyear WUI maps are relatively coarse at spatial resolu-
tion (400 m). A comprehensive investigation of WUI changes at 
finer resolution is required to assess the effect of wildfires and other 
potential threats on human communities, such as the spread of zoo-
notic diseases (38, 39), and to safeguard the biodiversity and ecosys-
tem services in the WUI (39, 40). Furthermore, the direct factors 
that lead to global WUI changes remain unexplored. Moreover, pre-
vious global studies have only examined wildfires within the WUI 
(6, 37). A quantitative analysis of historical wildfires in and near the 
WUI could inform the development of more cost-effective mitiga-
tion strategies to address this growing threat from wildfires.

Here, we developed global WUI maps at a 30-m resolution us-
ing land cover data from multisource satellite images in 2000, 
2010, and 2020 to investigate the distribution patterns, temporal 
changes, and potential wildfire risk represented by WUI areas. 
First, we derived buffer zones of urban and wildland areas and 
identified WUI areas globally using the GlobeLand30 dataset. Glo-
beLand30 contains global land cover products with 10 classes at a 
30-m resolution in 2000, 2010, and 2020 (41). The time span of our 
WUI mapping is 20 years, which allows us to investigate global 
WUI changes. By detecting land cover changes in WUI areas, we 
then attributed WUI growth and loss to the land cover change in 
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the urban area and wildland area. Furthermore, we investigated 
the spatial relationship between wildfires and WUI areas using fire 
observation data measured by NASA’s Moderate Resolution Imag-
ing Spectroradiometer (MODIS). The objective of this study is to 
examine the distribution and change of the WUI over the past two 
decades, which could represent potential wildfire exposure risk 
faced by human society and is crucial for improving fire manage-
ment policies and mitigating fire-related losses. Our findings will 
enable fire management departments to develop targeted fire pre-
vention and mitigation strategies and identify the frontiers of 
wildfire control efforts.

RESULTS
Mapping the global WUI
The WUI indicates where wildfires may pose a direct threat to hu-
man society (see Fig. 1A). The criteria for identifying the WUI vary 

across regions (see Materials and Methods), here, we defined the 
WUI as areas where 400-m buffers of wildland areas and 200-m buf-
fers of urban areas overlap. This definition is based on guidelines 
from the Food and Agriculture Organization (FAO) (42) and fur-
ther specified in European countries (25). As outlined in the flow-
chart shown in Fig. 1B, we mapped global 30-m WUI areas in 2000, 
2010, and 2020 using urban areas and wildland areas defined by 
land cover data. Specifically, urban areas, where people commonly 
gather and interact, are defined by artificial surface. Meanwhile, 
wildland areas—which include forest, shrubland, and grassland—
indicate potential fuel sources. We used GlobeLand30 dataset (43) 
to derive land cover types. Compared to other land cover datasets 
with coarser resolutions or limited to single year snapshots, the fine 
resolution (30 m), high accuracy, and long temporal coverage of 
GlobeLand30 (2000–2020, with a 10-year interval) could provide 
more information about the WUI distribution and change in both 
spatial and temporal dimensions.
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Fig. 1. WUI conception and fire regime over the past two decades. (A) Conceptual diagram illustrating how human society and wildfire interact from distant wildlands 
to densely populated urban areas. (B) Workflow we used to map the WUI and identify its changes and direct causes. We generated global WUI maps at 30 m resolution for 
the yeas 2000, 2010, and 2020 using the GlobeLand30 land cover dataset (43). We acknowledge that vector components such as buildings and mountains in (A) are de-
signed by pch.vector/Freepik (www.freepik.com) and vecteezy.com (www.vecteezy.com).
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We found that global WUI areas have reached 1.93 million km2 
in 2020, covering 1.44% of the terrestrial area (see Fig. 2). The spa-
tial distribution of the WUI in 2000 and 2010, shown in note S3, 
followed a similar distribution pattern, scattered across all conti-
nents except Antarctica. The Arctic, the deserts of Australia, the 
Sahara, northern Canada, and Greenland have almost no WUI, 
mainly due to the low level of human activities. The proportion of 
WUI areas in a 0.1° grid is relatively low (<20%) in most places 
(96.89%) in 2020 (Fig. 2B). While only 0.36% of grids have more 
than 50% of land identified as WUI areas. The majority of WUI 
areas were located in densely populated regions, such as the south-
eastern United States, eastern China, and western Europe, which is 
consistent with published WUI maps in 2020 (see note S4). The 
three zoomed-in figures of high-density WUI areas in Fig. 2 (D to 
F) show a typical pattern of the WUI distribution that WUI areas 
locate radially around urban regions and along roads, suggesting a 
strong correlation between human activity and potential fire risk 
to society.

We summarized the regional WUI areas within the 14 regions 
defined by the Global Fire Emissions Database (GFED) (see fig. S3), 
which is widely applied to extract regional heterogeneity in global 
wildfire studies (44–50). The statistics in table S1 reported that the 
WUI was unevenly distributed across different regions. For exam-
ple, Temperate North America (TENA), Central Asia (CEAS), and 
Europe (EURO) contributed the largest WUI in 2020, reaching 
478,757 km2 (24.80%), 405,607 km2 (21.01%), and 199,073 km2 
(10.31%), respectively. In contrast, there was only a 16,249 km2 
WUI area in the Northern Hemisphere South America (NHSA), 29 
times smaller than in TENA.

We aggregated the WUI map to 0.01° resolution and overlaid it 
with the WorldPop global population layer (fig. S2). We found that 
1.2 billion people lived in the WUI in 2020. Globally, the population 
density in the WUI (fig. S6) is proportionate to the WUI density 
shown in Fig. 2B (r = 0.468, 95% CI = [0.466, 0.469], P < 0.001), but 
there are exceptions. For example, Southern Hemisphere South 
America had a smaller scale of the WUI than EURO, with more 
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Fig. 2. Mapping the global WUI in 2020. (A and C) Summary of the WUI area at 1° longitude and latitude, respectively. The green, purple, and orange lines show the WUI 
areas for 2000, 2010, and 2020, respectively. (B) WUI distribution map at 0.1° spatial resolution in 2020. We aggregated the original 30-m WUI map to 0.1° × 0.1° for visual-
ization. The value refers to the WUI proportion (%) of each grid. (D to F) Zoomed-in maps for dense WUI areas (>50%) in Atlanta, United States (D); Johannesburg, South 
Africa (E); and Guangzhou, China (F), respectively. The maps are shown at a spatial resolution of 0.01°.
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people living in the WUI (fig. S7). Note that high population density 
in the WUI is not necessarily associated with large numbers of peo-
ple affected by wildfire. Local fire risk can be influenced by many 
factors in addition to human activities, including fire weather, fuels 
loads, and fire regimes. For example, the populations in the WUI 
were relatively small in California and southeastern Australia, while 
residents in these regions were severely threatened by frequent wild-
fires over the past decade.

Temporal changes in the global WUI
From 2000 to 2020, the global WUI area according to our WUI 
maps in 2000, 2010, and 2020 increased by more than a third to a 
total of 508,161 km2. Figure 3A shows a remarkable positive change 
in the WUI extent clustered in East Asia, mainly due to China’s rap-
id WUI expansion. The Southern Hemisphere, on the other hand, 

has remained relatively stable since 2000. Regional decreases in 
WUI areas were also observed, but increases in WUI areas (>0.5% 
on a 0.1° grid) were greater than decreases (<−0.5% on a 0.1° grid) 
(see Fig. 3A and fig. S7). Figure 3A shows that the WUI expansion 
was most prominently concentrated in the conterminous United 
States and eastern China since 2000. For example, some regions of 
Guangdong Province in China and California in the United States 
have experienced a substantial increase exceeding 30%. In compari-
son, a shrinking trend of the WUI was evident in various regions, 
including southeastern Australia, northern Europe, and western 
Russia. Regions with dense WUI coverage in 2020 are likely to have 
experienced rapid WUI expansion since 2000. Sub-Saharan Africa, 
for instance, which has a dense distribution of WUI in 2020, has 
seen the WUI increased rapidly over the past two decades. However, 
parts of the northeastern United States and northern Europe, where 

Fig. 3. The spatial extent of the global WUI change during 2000–2020. (A) WUI changes between 2000 and 2020 in a 0.1° grid. The spatial extent of absolute WUI 
changes is shown in green (areas where the WUI lost) and purple (areas the WUI increased). Grids with slight changes (within ±0.5%) are set to transparent. (B) Distribu-
tions of WUI changes in a 0.1° grid presented by density plots and box plots. Blue, yellow, and red denote changes in 2000–2010, 2010–2020, and 2000–2020, respec-
tively. The center line and edges of the box represent the median, first quartiles, and the third quartiles, respectively. The whiskers stretch from the box to cover 1.5 times 
interquartile range. The dense points at both ends of the whiskers are outliers. Given the long-tailed nature of the data, we cut the x axis to display only change within the 
range of ±2%. (C to E) Original 30-m WUI changes in 2000, 2010, and 2020 are shown in three regions located in eastern United States (C), South Africa (D), and Southeast 
China (E). The colors of pixels correspond to the WUI’s existing time, detailed in the right legend. The colors blue, light orange, and pink indicate that the pixel was identi-
fied as WUI area in a particular year, 2000, 2010, and 2020. Green, purple, and orange pixels indicate that WUI areas existed in 2000 and 2010, 2000 and 2020, 2010 and 
2020, respectively. Moreover, yellow pixels indicate where WUI persisted from 2000 to 2020. The background terrain map was a stamen terrain map provided by the gg-
map R package (65).
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WUI areas were prevalent in 2020, showed a notable decline in WUI 
areas from 2000 to 2020. This specific phenomenon could be a result 
of the decline in the local urban area shown in Fig. 4A.

We further explored the changes of WUI areas in 2000–2010 and 
2010–2020 (see fig. S11). We found that most of the new WUI was first 
identified in 2020, indicating an inconstant rate of global WUI changes 
during two periods (Fig. 3B). The first decade (2000–2010) contributed 
only 15% to the total increase in the WUI from 2000 to 2020, while 

2010–2020 experienced an astonishing surge, accounting for 85% of the 
WUI growth. A similar uneven growth rate was also observed in some 
GFED regions. For example, Equatorial Asia experienced 95.97% of the 
new WUI between 2010 and 2020, and Boreal Asia even experienced a 
slight decline between 2000 and 2010 (table S1). Among 14 regions, the 
lowest contribution of new WUI between 2010 and 2020 was 50.17%, 
observed in the NHSA. Fig. 3 (C to E) further illustrates the unbalanced 
growth of WUI areas at 30-m resolution.
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Fig. 4. Land cover change characterizing WUI trends worldwide. (A) Overlapping changes in wildland and urban areas contributed to absolute changes in the WUI (% 
per 0.1° grid cell) from 2000 to 2020, with colors delineated by the proportion of the WUI shift caused by land cover change. (B) Distribution of grid values from the loca-
tions in (A). The heatmap shows grids summed at 1% intervals for both wildland-caused and urban-caused WUI changes simultaneously. The annotation on the heatmap 
refers to the number of grids in each group. The color classification is consistent with (A). For example, purple represents areas where both urban and wildland changes 
led to WUI expansion. The color intensity in the heatmap indicates the number of grids summarized by group, with deeper colors representing larger quantities. (C) 
Global summary of wildland and urban contributions to the WUI change. The black bars show WUI areas in 2000, 2010, and 2020, and the height of the colored bars indi-
cates the WUI change in the corresponding period. Relative changes in 2000–2010 and 2010–2020 were calculated on the basis of WUI areas in 2000 and 2010, respec-
tively.
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WUI trends directly impacted by urbanization and wildlands
On the basis of our WUI definition, wildland and urban distribu-
tion are the two factors that have directly driven change in the 
WUI. We found that urban expansion was dominantly responsible 
for the rapid expansion of the WUI worldwide (Fig. 4, A and C), 
consistent with an unprecedented growth rate of global urbaniza-
tion (51). The growth attributed to urbanization of the WUI has 
reached 589,914 km2, which is considerably greater than the net in-
crease in the global WUI from 2000 to 2020. Furthermore, the dis-
tribution of 0.1° grid cells supports this conclusion, with most grids 
experiencing the WUI growth due to urbanization (Fig. 4B). Figure 
4C shows a rather weak influence of the remaining factors, includ-
ing urban area decline and wildland dynamics, on the global WUI 
change. All factors except urbanization had roughly equivalent con-
tributions to the WUI and remained stationary over the past two 
decades. However, contrasting phenomena were observed in some 
regions and countries. For example, vegetation-induced WUI in-
creases overweighted urbanization–related WUI increases in the 
Middle East (MIDE), EURO, and Southeast Asia (SEAS) according 
to fig. S13. In addition, the loss of vegetation and urban areas re-
sulted in a large portion of the WUI reduction scattered worldwide 
(fig. S12).

The acceleration of urban expansion resulted in the WUI ex-
panding by 7.9 and 31.7%, respectively, during two periods (Fig. 
4C), leading to an abrupt increase in the speed of WUI expansion. 
At the regional level, a remarkable increase in urban areas changed 
the spatial pattern of WUI trends in 2010–2020 compared to 2000–
2010, such as in eastern Europe and the Democratic Republic of 
the Congo (fig. S12). Compared to 2000–2010, most GFED regions 
experienced increased urbanization-related WUI growth in 2010–
2020, as reported in table S6. The only exception is EURO, where the 
growth of WUI areas directly driven by urban areas remained 
relatively constant.

The patterns between fire activity and WUI
Wildfire risk has increased over the past two decades despite a slight 
decrease in fire observations (fig. S4, A and B). To investigate the 
potential for local communities to be exposed to wildfire events in 
the WUI, we further explored the spatial relationship between WUI 
areas and wildfire activities. Specifically, to quantify how fire activity 
and intensity varied with proximity to the WUI, we adopted each 
MODIS fire observation as one fire hot spot and calculated its dis-
tance to the nearest WUI (hereafter Dis2WUI, see Materials and 
Methods). We selected fire radiative power (FRP) and fire count as 
critical indexes to represent fire activities in and near the WUI. Fire 
hot spots were categorized into different FRP ranges (10-MW inter-
val) and by their distance from the nearest WUI (1-km interval). In 
2020, there were 1.09% of fire hot spots located in the WUI and 
32.29% of fire hot spots located within 5 km of the WUI. Among the 
14 GFED regions, CEAS had the most fire hot spots located in the 
WUI in 2020, with 4.84% of total fire hot spots. Other regions such 
as TENA, EURO, and MIDE also experienced more than 3% of fire 
hot spots located in the WUI in 2020 (table S7).

From 2018 to 2022, the majority of fire hot spots, specifically 
96.06% in the WUI and 94.23% within 5 km of the WUI, had a FRP 
of 100 MW or less. As shown in fig. S14B, low-intensity fire hot 
spots, defined as FRP less than 20.4 MW (50th percentile FRP, cal-
culated from all 2020 fire observations), occurred predominantly 
within the WUI. In contrast, high-intensity fire hot spots, defined as 

FRP greater than 387.6 MW (99th percentile FRP, calculated from 
all 2020 fire observations), were most likely to occur between 2 and 
9 km from the WUI. These zones had more than 1500 fires per year 
in each 1-km bin (fig. S14C). The large number of wildfires in the 
WUI supports the hypothesis that the WUI is a fire-prone area 
where human lives and assets are vulnerable to wildfire and high-
lights the urgent need to implement more aggressive policies in the 
WUI when managing fire regimes.

As Dis2WUI increased, the number of fires decreased (fig. 
S14A). This phenomenon was also evident for all regions except 
South America (Fig. 5C), where fire intensities appeared to increase 
slightly with increasing Dis2WUI, suggesting that natural forces 
(e.g., lightning) may play a greater role in shaping local fire regimes. 
The stacked top plot in Fig. 5A shows that the relationship between 
summed FRP and Dis2WUI approximately fits an inverted U-
shaped curve for fire hot spots with FRP less than 100 MW and de-
tected within the 5-km buffer of WUI areas. The inflection points of 
the curves shift away from the WUI as FRP increases, indicating 
that fire hot spots closer to the WUI tend to burn with less intensity. 
We also analyzed the change in fire activities. Comparing wildfire 
records near the WUI from 2008 to 2012 and 2018 to 2022, Fig. 5B 
shows that fire observations with FRP < 20 MW increased within 
the 1-km buffer of the WUI. In contrast, fire activities decreased in 
areas at least 3 km away from the WUI. Similar variation trend was 
observed in regions such as MIDE and Northern Hemisphere Africa 
(NHAF). Since 2010, Central America (CEAM), SEAS, and South-
ern Hemisphere Africa (SHAF) has become more prone to wildfires 
in and near the WUI (Fig. 5D). The uneven change in human expo-
sure to wildfires since 2010 in and near the WUI may be due to the 
gradual intensification of human activities and the rapid expansion 
of the WUI.

DISCUSSION
Understanding wildfire-society interactions requires tracking long-
term global WUI changes at fine resolution. However, existing glob-
al WUI maps either offer high-resolution (10 m) snapshots for a 
single year (6) or track changes in the WUI at a coarser resolution 
(400 m) (37). Using satellite-derived land cover data, our study pro-
vided global WUI distribution data with a fine resolution (30 m) 
available in 2000, 2010, and 2020. By evaluating the temporal change 
of the global WUI, we revealed the rapid growth of the WUI across 
the world. A distinctive contribution of our research is to quantify 
the immediate causes of WUI change that can be directly attributed 
to the transition from other land cover types to urban and wildland 
buffers. Previous studies have shown that housing growth is the pri-
mary driver of WUI expansion (7,  28) by comparing population 
growth with housing growth. Using the definition that WUI is 
where wildland buffers and urban buffers overlap, we first demon-
strated that urbanization is a key driver of the WUI expansion, em-
phasizing the impact of human activities in introducing fire threats 
to communities. Last, we investigated the pattern of wildfire occur-
rence not only within the WUI but also in the surrounding regions. 
We found that low-intensity fire hot spots tend to cluster around 
WUI areas. Scholars (29, 31) have demonstrated that the frequency 
of fire ignitions and burn severity are typically lower in densely pop-
ulated areas by studying building structures in the WUI. Our results 
therefore confirm these findings on a more macroscale. The fire re-
gimes around the WUI could be a comprehensive result of denser 
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Fig. 5. Spatial characteristics of fires in and near the WUI. (A) Fire activities occurred within a 5 km radius of the WUI from 2018 to 2022, with FRP less than 100 MW, summarized 
by Dis2WUI and FRP. The yellow line in the top chart represents the mean fire counts in each distance group, while the blue boxplot shows the FRP distribution. (B) Differences in fire 
activities in and near the WUI from 2008 to 2012 and 2018 to 2022, grouped by Dis2WUI and FRP. The top box plot shows fire FRP distribution within each distance interval. (C) Re-
gional fire activities occurred within a 5-km radius of the WUI from 2018 to 2022 for 14 GFED regions. The red line and the blue line represent mean fire counts and FRP over 5 years, 
respectively. (D) Regional differences in fire activities in and near the WUI from 2008 to 2012 and 2018 to 2022 for 14 GFED regions. The red and blue lines represent changes in fire 
counts and FRP, respectively. The x and y axes in the heatmap (A) and (B) denote Dis2WUI and FRP for each fire hot spot. The first column in the heatmap (A) and (B) depicts hot spots 
falling in the WUI. The numbers on the heatmap are the mean fire counts over 5 years [×103 in (A) and ×102 in (B)], and the grid color represents the mean value of summed FRP in 
each group. The shadow areas of lines in (A) and (C) depict the minimum and maximum value of fire counts or FRP from 2018 to 2022. Note that we used the 2010 WUI map to cal-
culate Dis2WUI for fires from 2008 to 2012 and the 2020 WUI map for fires from 2018 to 2022. AUST, Australia and New Zealand; BOAS, Boreal Asia; BONA, Boreal North America; 
CEAM, Central America; CEAS, Central Asia; EQAS, Equatorial Asia; EURO, Europe; MIDE, Middle East; NHAF, Northern Hemisphere Africa; NHSA, Northern Hemisphere South America; 
SEAS, Southeast Asia; SHAF, Southern Hemisphere Africa; SHSA, Southern Hemisphere South America; TENA, Temperate North America.
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human-caused ignitions, more intensive firefighter resources, and 
human-caused vegetation fragmentation around the WUI. Our 
finding reveals that fire occurrences with high FRP value were pri-
marily observed in areas adjacent to the WUI, consistent with previ-
ous study that human-ignited fires result in higher fire intensity (52).

Given the different criteria used to identify WUI areas, we re-
ported relatively lower WUI areas and populations living within 
the WUI. However, our results show a similar spatial pattern to pre-
vious WUI maps at both global and regional scales (tables S2 and 
S4). All three global WUI maps are consistent with regional WUI 
assessments, for example, showing a high concentration of WUI ar-
eas in the eastern United States (7, 53). Steady growth of the WUI 
has been observed in the conterminous United States from 1990 to 
2010 (7) and globally from 1985 to 2020 (37). Our results confirm 
the upward trend and show that it has steepened since 2010. In 
Europe, we also found a similar regional WUI spatial pattern that 
concentrated in western Portugal, Belgium, and the coastline of 
the Mediterranean (25). However, differences were observed when 
comparing with WUI patterns mapped at higher resolution, which 
were based on the definition of the WUI from the U.S. Federal Reg-
ister. Previous work (28, 53) indicated that the WUI in California 
was largely concentrated along the western coastline and west of the 
Sierra Nevada Mountain range, while our evaluation indicated that 
the WUI was also sparsely distributed in central and southeastern 
California (fig. S10).

We acknowledge some limitations in our study, particularly re-
garding the definition of the WUI, the original input data, and un-
certainties in data processing. The FAO definition of the WUI 
considers all built-up areas as urban, ignoring differences in the 
density of building materials of settlement structures from rural 
areas to urban centers. By applying a consistent definition of the 
WUI, we acknowledge that areas where residents are at risk of ex-
posure to wildfires tends to be underestimated in communities 
proximate to nature while overestimated in a cold or sparsely pop-
ulated area. Second, because of the limited temporal resolution (10 
years) of the input land cover dataset, we could only calculate dis-
continuous global WUI areas for three versions. Variability in the 
GlobeLand30 dataset presents another uncertainty, as the avail-
ability of input data may have been lower in earlier years. This 
limitation could be better addressed with more accurate datasets 
in future. Third, computational errors may occur during data pro-
cessing, such as merging and resampling raster data. Since uncer-
tainty levels remained constant in 2000, 2010, and 2020, our main 
conclusion that the WUI is widespread worldwide and has in-
creased markedly over the two decades should remain virtually 
unchanged. Last, our study only examined the spatial correlation 
between wildfires and WUI areas, without exploring the interac-
tion between wildfires and human society. Our analysis treated 
urban areas as synonymous with human society, assuming that the 
probability of a fire occurring outside the WUI but within urban-
ized areas was extremely low.

Our 30-m resolution mapping of the WUI could provide a solid 
foundation for future relevant research. For example, future re-
search could examine a more refined relationship between wildfire 
and socioeconomic losses using population or other socioeconomic 
datasets, which could help manage fire regimes more effectively. By 
using projections of land cover change and climate data under 
Shared Socioeconomic Pathways, we could further investigate how 
WUI areas and interior wildfire risk change under different future 

scenarios. Because the WUI is not identical to the fire-prone area 
where wildfires frequently occur and where residents are most likely 
to be exposed to wildfires, it is critical to identify different levels of 
fire risk in WUI areas and to identify key factors that influence wild-
fire risk variability in WUI areas. One possible assumption is that 
the relationship between human activity intensity and wildfire risk 
shows an inverted U-shaped pattern. We only examined the direct 
causes of WUI changes, and more detailed analysis should be con-
ducted in the future to find out the underlying factors that contrib-
ute to WUI changes, such as population growth and vegetation 
cover change.

With this work, we have established a workflow for mapping 
the WUI that will allow for more convenient updating of the WUI 
using rapidly developed land cover datasets in the future (54). The 
global distribution of WUI areas can therefore be a powerful poli-
cy tool to address wildfire-related threats at the individual and 
governmental levels. Governments in countries that have experi-
enced large increase in the WUI since 2000, as shown in our re-
sults, such as eastern China, the United States, and Nigeria, should 
use more policy tools and allocate resources to WUI areas. It is 
crucial for these regions to strategically control the spread of ur-
ban development into wildlands to slow down the growth of WUI 
areas. More targeted policies and guidelines could be developed 
and implemented using our fine WUI maps, including reducing 
fuel loads, educating homeowners, strengthening the patrols, and 
optimizing fire stations (7). However, because urbanization was 
the primary driving force behind WUI expansion, it is impossible 
to effectively address wildfire challenges without preventing vege-
tation fragmentation. The results of this study demonstrate that 
governments should fully consider fuel situations when expanding 
community borders during urban planning. In addition, limited 
firefighting resources should be allocated to areas within 3 km of 
the WUI, which have experienced increased wildfires in recent 
years. By leveraging our WUI maps, global insurance companies 
could also more accurately assess regional fire risks posed to hu-
man society and price property insurance policies. At an individu-
al level, residents living in the WUI near vegetation are advised to 
be cautious about burning open fires in flammable vegetation, as 
human ignitions tend to exacerbate wildfire hazards around WUI 
areas (22).

MATERIALS AND METHODS
Experimental design
In this study, we conducted a comprehensive analysis of the global 
WUI evolution at three time points (separated by 10-year intervals) 
over a 20-year period from 2000 to 2020, at a high-resolution (30 m) 
scale. Initially, we created 400-m buffers around wildlands (includ-
ing forests, shrublands, and grasslands) and 200-m buffers around 
urban areas using GlobeLand30 (43) land cover data and then delin-
eated the global WUI by overlaying these buffers. The WUI maps in 
2000, 2010, and 2020 allow us to investigate how WUI areas change 
around the world. To further understand WUI dynamic, we ana-
lyzed the direct causes of WUI changes at pixel level by comparing 
the land cover type in different periods. Ultimately, we tried to un-
derline the significance of the WUI in fire management and risk 
mitigation. With active fires detected by MODIS, we calculated the 
distance from each fire to the nearest WUI area and illustrated the 
spatial relationship of wildfires and WUI areas.
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Data sources
Global land cover data
Since high spatial resolution satellite images covering the world be-
came available, a bunch of global land cover datasets finer t han 
100- m resolution have been developed (55, 56). However, most fine- 
resolution land cover datasets only contain a single year release, 
such as FROM- GLC10 (10- m resolution in 2017), and GLC_FCS30 
(57) (30- m resolution in 2015). While GlobeLand30 satisfies high 
spatial resolution and long temporal coverage, we chose it as the 
global land cover data to map WUI. Developed with a consistent 
classification system and methods by the Chinese Ministry of Natu-
ral Resources in 2000, 2010, and 2020, GlobeLand30 is a compre-
hensive set of global 30- m resolution land cover products. The 
accuracy assessment was conducted using 154,586 samples and 
more than 230,000 samples for GlobeLand30 V2010 and V2020, re-
spectively, resulting in an overall accuracy of 83.50% for V2010 
(with a kappa coefficient of 0.78) and 85.72% for 2020 (with a kappa 
coefficient of 0.82). The worldwide high spatial resolution, long- 
term consistency, and reliability made it widely used to monitor 
land cover change.

GlobeLand30 provides 10 land cover classification types: culti-
vated land, forest, grassland, shrubland, wetland, water bodies, arti-
ficial surfaces, permanent snow and ice, tundra, and bare land. Forest 
refers to land with trees, with a canopy coverage of more than 30%. 
Grassland refers to land covered by natural herbaceous vegetation 
with coverage greater than 10%, including steppe, meadow, savanna, 
desert steppe, and urban artificial g rassland. S hrubland r efers t o 
land covered by shrubby with shrub coverage greater than 30%, in-
cluding montane, deciduous, and evergreen, and desert areas with 
shrub coverage greater than 10%. Artificial surfaces are formed by 
artificial construction activities, including all kinds of residential 
land, industrial and mining facilities, transportation facilities, and 
more, excluding the contiguous green land and water bodies in-
side the construction land. The validation of GlobeLand30 V2010 
showed that user’s accuracy of artificial surfaces, forest, grassland, 
and shrubland is 86.70, 83.58, 72.16, and 72.64%, respectively. The 
misclassification w ithin l and c over t ypes o f w ildland ( grassland, 
shrubland, and forest), such as mistakenly labeling shrubland as 
forest, slightly influenced on the final result. Although the potential 
urban artificial grassland contained in grassland would lead to ex-
aggeration of WUI areas inside cities. We acknowledge that Globe-
Land30 assigned each pixel with a single class, unable to provide 
information for mixed pixels, which might affect t he accuracy of 
WUI identification.
Active wildfire product
We used MODIS C6.1 MCD14ML active fire product to depict the 
fire regime nearby the WUI area provided by the Fire Information 
for Resource Management System (FIRMS). We chose MCD14ML 
due to its extensive temporal coverage from 2003 to 2020, which 
facilitates the analysis of spatial relationship between fires and WUI 
over time. Furthermore, MCD14ML is one of the most widely used 
fire observation products, containing all Terra and Aqua MODIS 
fire pixels. The spatial resolution of MCD14ML is 1 km, and the co-
ordinates of each detection are the longitude and latitude of the cen-
ter point of the 1- km pixel but not exactly where the fire was 
detected. The overall omission error of fi re de tections was 86.2%. 
Generally, the fire size is smaller than the pixel (58). Each record 
indicates that one or more fires occurred within the pixel, while we 
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considered each record as an independent wildfire event. The ap-
proach implies that larger wildfires extending beyond 1 km2 or per-
sisting over several days might be identified as multiple distinct 
fire events.

The MCD14ML wildfire product provides daily fire information 
with the latitude and longitude of the fire pixels, observed date, FRP, 
and more. Four fire types are detected in MCD14ML, including pre-
sumed vegetation fire, an active volcano, other static land sources, 
and offshore fire. We only included fire observations categorized as 
vegetation fire for analysis. However, we acknowledge that some 
small fires might not be detected in MCD14ML product out of its 
relatively coarse spatial resolution, as previous studies revealed 
(59, 60).
WUI identification and global mapping
The WUI is where wildland and urban areas interact. Because the 
natural environment and the strength of human activities vary 
among countries, no worldwide standard identification of WUI 
areas exists. In North America, most scholars identified the WUI 
according to the definition published by the U.S. Federal Register 
(7, 27, 61), which divides WUI into two categories: intermix WUI 
and interface WUI. Intermix WUI is where man-made structures 
are densely located with wildland fuel scattered. Interface WUI has 
a clear boundary between the urban area and the wildland area. In 
Europe, however, the WUI definition maintained a large variety 
(22). For example, a study in Spain divided the WUI into three 
groups based on vegetation type (62). In Portugal, the WUI was de-
fined as direct and indirect by reclassifying the land cover map (63).

To enable the production of WUI maps at fine spatial resolution 
with long temporal series, we used the European identification cri-
terion of the WUI, which was first raised by the FAO (42), based on 
the definition of WUI areas as where urban buffers and wildland 
buffers overlay. Under our definition, the WUI is not classified into 
intermix WUI and interface WUI. The criterion was widely used in 
European countries with legal buffer distances ranging from 50 to 
200 m for urban areas and 100 to 400 m for wildland areas across 
different national legal frameworks (25,  64). Considering various 
fire weather conditions and firefighting abilities across regions, we 
chose 200 and 400 m as buffer distances for urban and wildland ar-
eas. The buffer distances are relatively large to minimize the omis-
sion of potentially fire-threatened areas.

As shown in Fig. 1B, we first defined urban layers as artificial 
surfaces in GlobeLand30. The wildland layer created from the com-
bination of forest, grassland, and shrubland types. We identified the 
WUI at a 30-m resolution scale. To improve computing efficiency, 
we first split each 30-m resolution land cover product tile into 
400 blocks (around 1500 m in both width and height), each side 
with a 600-m (20 pixels) buffer to mitigate the edge effect. Subse-
quently, we separated wildland and urban layers in each block. We 
generated 200-m buffer zones for urban and 400-m buffer zones for 
wildland and derived WUI areas by overlapping the wildland 
and urban buffer zones. To further analyze and summarize the 
global WUI, we reprojected all 30-m tiles to 0.01° resolution in the 
WGS84 coordinate system using the average weight method pro-
vided by GDAL’s gdalwarp function (https://gdal.org/programs/
gdalwarp.html) and merged them into a global map. The pixel 
value in the 0.01° WUI map refers to the area proportion of WUI 
areas in each grid. We derived WUI changes in different periods 
by directly comparing global mosaic WUI maps at 0.01° resolution. 
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When displaying global WUI distribution and change, we aggre-
gated 0.01° global WUI areas into 0.1° grid cells.
Quantifying the direct causes of WUI changes
The land cover change directly affects WUI changes. Newly in-
creased and lost WUI areas directly caused by the change of urban 
and wildland. To identify the immediate cause of WUI changes in 
30-m pixels, we observed land cover type transformations. For ex-
ample, if a new WUI pixel newly appeared in 2010 was located in an 
urban buffer but not located in a wildland buffer in 2000, then the 
immediate cause of the WUI increase in the pixel is wildland expan-
sion. For pixels where wildland and urban simultaneously lead to 
WUI change, we assumed that wildland and urban contribute 
equally, i.e., 50%, respectively. We listed all potential situations of 
land cover change and the corresponding direct factors of WUI 
change in table S5. To match the resolution of the global land cover 
dataset, we identified direct factors of WUI changes at 30-m resolu-
tion based on original land cover data used for the WUI identifica-
tion. Similarly, we transformed direct factors identification results at 
30-m resolution into 0.01° global map with two layers, urban contri-
bution and wildland contribution. The values of the aggregated 
pixel indicate the absolute change of the WUI proportion in the 
pixel contributed by urban and wildland change. Moreover, the total 
WUI change proportion in one pixel equals the sum of two immedi-
ate causes, i.e., the sum of the urban-related and wildland-related 
change. We ignored the potential marginal effect when processing 
merging and resampling of raster data. However, the inaccuracy 
caused by the marginal effect will not affect the trends in the distri-
bution of WUI areas and its immediate causes, as the data and pro-
cessing method were kept consistent when generating products in 
2000, 2010, and 2020.
Assessing fire regimes nearby the WUI
To better understand how the WUI expansion threatens human 
society, we analyzed the spatial relationship between wildfire ob-
servations and WUI areas. We focused on each detected fire hot 
spot without combining multiple hot spots into fire events and 
transformed it into a spatial point with coordinates provided by 
MCD14ML. Furthermore, the WUI at 30-m resolution was trans-
formed into polygons, merging adjacent WUI pixels. We calculat-
ed the great circle distance from points to the border of the nearest 
WUI polygon. For fire hot spots located in the WUI, the nearest 
distance to the WUI is set to 0. We assumed that all vegetation fire 
hot spots were wildfires located either in the WUI or in wildland 
areas, ignoring a few that were in urban areas. We solely consid-
ered fire hot spots with Dis2WUI less than or equal to 5 km, con-
centrating our study on fire occurrences that are more likely to 
affect human communities directly. Last, we grouped fire observa-
tions by distance to the nearest WUI with 1-km intervals and FRP 
with 10-MW intervals to display the fire distribution pattern 
around the WUI.
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