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ENVIRONMENTAL STUDIES

Global expansion of wildland-urban interface
intensifies human exposure to wildfire risk in the

21st century

Yongxuan Guo't, Jianghao Wang'?*t, Yong Ge**, Chenghu Zhou'*?

Rapidly increasing human-nature interactions exacerbate the risk of exposure to wildfires for human society. The
wildland-urban interface (WUI) represents the nexus of human-nature interactions, where the risk of exposure to
natural hazards such as wildfire is most pronounced. However, quantifying long-term global WUI change and the
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corresponding driving factors at fine resolution remain challenging. Here, we mapped and analyzed the global
WUI at 30-meter resolution in 2000, 2010, and 2020. Our analysis revealed that the global WUl expanded by 35.6%
since 2000, reaching 1.93 million square kilometer in 2020. Notably, 85% of this growth occurred between 2010
and 2020. The increase in WUI was primarily driven by the unprecedented expansion of global urbanization, con-
tributing an additional 589,914 square kilometer of WUI. In addition, the number of small fires occurring in WUI
areas has increased substantially since 2010. These findings underscore the rising wildfire risk to human society
and highlight the urgency of implementing tailored fire management strategies in WUI areas.

INTRODUCTION

The interactions between humans and the natural environment have
increased exponentially in the Anthropocene (I1). While remote ar-
eas may be indirectly affected by teleconnections resulting from
human-caused climate change (2, 3), the most immediate conflicts
and mutual impacts between human society and Earth system are
concentrated in areas where urban border and wildland meet (4-6),
an area known as the wildland-urban interface (WUI). The WUI is
appealing area for people due to its proximity to nature. This prox-
imity carries a high risk of exposure to natural hazards such as
floods, landslides (6), and wildfire (7).

Along with frequent droughts and heatwaves (8), the past two
decades have witnessed a substantial increase in the occurrence of
extreme and large wildfires (9, 10). These fires have a detrimental
impact on human health (11-14), society (15, 16), and the economy
(17, 18). Therefore, wildfires demand particular attention among all
natural hazards in the WUI. The WUI offers a unique opportunity
to observe the complex interactions between humans and wildfires,
given the presence of sufficient fuel intermixed with urban areas.
People living in or in proximity to WUI areas face an elevated mor-
tality risk due to exposure to flames and the heat of wildfires (13, 19).
Wildfire-related smoke can result in an increase in the risk of illness
and death in more distant areas, with studies indicating that this risk
extends up to 1000 km away (13, 20, 21). Moreover, the fire regime
in the WUI is predominantly influenced by human activities. A
large proportion of wildfires in the WUTI originate from human igni-
tions (7, 22), such as campfires and cigarette butts, while landscape
fragmentation caused by man-made structures limits the extent of
wildfires (23). Furthermore, the WUI is the area where the most
intensive fire management policies have been implemented (24),
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and fire-prone regions have witnessed an increasing expenditure on
fire suppression (17, 19). Given the frequency of disastrous wildfires
in the WU, it is of great importance to study how and why the WUI
has changed globally, with a view to preventing and managing dan-
gerous wildfires.

Previous studies have primarily concentrated on mapping the
distribution of WUI areas (7, 25-30) or modeling fires in the WUI
(31-33), with particular emphasis on fire-prone developed regions,
such as the United States (17, 28), Canada, and southern Europe
(29). The advent of high-resolution satellite imagery has facilitated
the mapping of WUI distributions at finer resolutions (28, 34-36).
Recently developed global WUI maps have demonstrated the wide-
spread distribution of WUTI areas across continents in 2020 (6, 37).
While the rapid growth of WUT areas and the subsequent fire expo-
sure risk have been revealed at local (7) and global scales (37), the
existing multiyear WUI maps are relatively coarse at spatial resolu-
tion (400 m). A comprehensive investigation of WUI changes at
finer resolution is required to assess the effect of wildfires and other
potential threats on human communities, such as the spread of zoo-
notic diseases (38, 39), and to safeguard the biodiversity and ecosys-
tem services in the WUI (39, 40). Furthermore, the direct factors
that lead to global WUI changes remain unexplored. Moreover, pre-
vious global studies have only examined wildfires within the WUI
(6, 37). A quantitative analysis of historical wildfires in and near the
WUI could inform the development of more cost-effective mitiga-
tion strategies to address this growing threat from wildfires.

Here, we developed global WUI maps at a 30-m resolution us-
ing land cover data from multisource satellite images in 2000,
2010, and 2020 to investigate the distribution patterns, temporal
changes, and potential wildfire risk represented by WUI areas.
First, we derived buffer zones of urban and wildland areas and
identified WUI areas globally using the GlobeLand30 dataset. Glo-
beLand30 contains global land cover products with 10 classes at a
30-m resolution in 2000, 2010, and 2020 (41). The time span of our
WUI mapping is 20 years, which allows us to investigate global
WUI changes. By detecting land cover changes in WUI areas, we
then attributed WUI growth and loss to the land cover change in
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the urban area and wildland area. Furthermore, we investigated
the spatial relationship between wildfires and WUI areas using fire
observation data measured by NASAs Moderate Resolution Imag-
ing Spectroradiometer (MODIS). The objective of this study is to
examine the distribution and change of the WUI over the past two
decades, which could represent potential wildfire exposure risk
faced by human society and is crucial for improving fire manage-
ment policies and mitigating fire-related losses. Our findings will
enable fire management departments to develop targeted fire pre-
vention and mitigation strategies and identify the frontiers of
wildfire control efforts.

RESULTS

Mapping the global WUI

The WUI indicates where wildfires may pose a direct threat to hu-
man society (see Fig. 1A). The criteria for identifying the WUI vary

across regions (see Materials and Methods), here, we defined the
WUI as areas where 400-m buffers of wildland areas and 200-m buf-
fers of urban areas overlap. This definition is based on guidelines
from the Food and Agriculture Organization (FAO) (42) and fur-
ther specified in European countries (25). As outlined in the flow-
chart shown in Fig. 1B, we mapped global 30-m WUI areas in 2000,
2010, and 2020 using urban areas and wildland areas defined by
land cover data. Specifically, urban areas, where people commonly
gather and interact, are defined by artificial surface. Meanwhile,
wildland areas—which include forest, shrubland, and grassland—
indicate potential fuel sources. We used GlobeLand30 dataset (43)
to derive land cover types. Compared to other land cover datasets
with coarser resolutions or limited to single year snapshots, the fine
resolution (30 m), high accuracy, and long temporal coverage of
GlobeLand30 (2000-2020, with a 10-year interval) could provide
more information about the WUI distribution and change in both
spatial and temporal dimensions.

A

Fire station

Fire suppression

Prescribed fire

Cigarette

Wildland urban interface

Lightning

2Pgs

Human ignited fire Natural forced wildfire

Camp fire

Wildland

—

Wildland
layer

L
.

Urban layer

400-m buffer

—_— ‘\ )
=
C

200-m buffer

“Wul

Global 30-m
land cover data

Overlay

(" Evaluate wildfire risk

N in and near the WUI

Rt a4

2000

2010

.I }
2020
Global WUI distribution

I -3

Ve .
- ‘, Calculate distance from

WUI changes

fires to the nearest WUI/“ ‘ e, !

\-

Drivers of WUI changes

Fig. 1. WUI conception and fire regime over the past two decades. (A) Conceptual diagram illustrating how human society and wildfire interact from distant wildlands
to densely populated urban areas. (B) Workflow we used to map the WUI and identify its changes and direct causes. We generated global WUI maps at 30 m resolution for
the yeas 2000, 2010, and 2020 using the GlobeLand30 land cover dataset (43). We acknowledge that vector components such as buildings and mountains in (A) are de-
signed by pch.vector/Freepik (www.freepik.com) and vecteezy.com (www.vecteezy.com).
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We found that global WUT areas have reached 1.93 million km?
in 2020, covering 1.44% of the terrestrial area (see Fig. 2). The spa-
tial distribution of the WUI in 2000 and 2010, shown in note S3,
followed a similar distribution pattern, scattered across all conti-
nents except Antarctica. The Arctic, the deserts of Australia, the
Sahara, northern Canada, and Greenland have almost no WUI,
mainly due to the low level of human activities. The proportion of
WUI areas in a 0.1° grid is relatively low (<20%) in most places
(96.89%) in 2020 (Fig. 2B). While only 0.36% of grids have more
than 50% of land identified as WUT areas. The majority of WUI
areas were located in densely populated regions, such as the south-
eastern United States, eastern China, and western Europe, which is
consistent with published WUI maps in 2020 (see note S4). The
three zoomed-in figures of high-density WUTI areas in Fig. 2 (D to
F) show a typical pattern of the WUI distribution that WUI areas
locate radially around urban regions and along roads, suggesting a
strong correlation between human activity and potential fire risk
to society.

We summarized the regional WUI areas within the 14 regions
defined by the Global Fire Emissions Database (GFED) (see fig. S3),
which is widely applied to extract regional heterogeneity in global
wildfire studies (44-50). The statistics in table S1 reported that the
WUI was unevenly distributed across different regions. For exam-
ple, Temperate North America (TENA), Central Asia (CEAS), and
Europe (EURO) contributed the largest WUI in 2020, reachin%
478,757 km® (24.80%), 405,607 km” (21.01%), and 199,073 km
(10.31%), respectively. In contrast, there was only a 16,249 km®
WUI area in the Northern Hemisphere South America (NHSA), 29
times smaller than in TENA.

We aggregated the WUI map to 0.01° resolution and overlaid it
with the WorldPop global population layer (fig. S2). We found that
1.2 billion people lived in the WUI in 2020. Globally, the population
density in the WUI (fig. S6) is proportionate to the WUI density
shown in Fig. 2B (r = 0.468, 95% CI = [0.466, 0.469], P < 0.001), but
there are exceptions. For example, Southern Hemisphere South
America had a smaller scale of the WUI than EURO, with more
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Fig. 2. Mapping the global WUI in 2020. (A and C) Summary of the WUl area at 1° longitude and latitude, respectively. The green, purple, and orange lines show the WUI
areas for 2000, 2010, and 2020, respectively. (B) WUI distribution map at 0.1° spatial resolution in 2020. We aggregated the original 30-m WUI map to 0.1° x 0.1° for visual-
ization. The value refers to the WUI proportion (%) of each grid. (D to F) Zoomed-in maps for dense WUI areas (>50%) in Atlanta, United States (D); Johannesburg, South
Africa (E); and Guangzhou, China (F), respectively. The maps are shown at a spatial resolution of 0.01°.
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people living in the WUI (fig. S7). Note that high population density
in the WUI is not necessarily associated with large numbers of peo-
ple affected by wildfire. Local fire risk can be influenced by many
factors in addition to human activities, including fire weather, fuels
loads, and fire regimes. For example, the populations in the WUI
were relatively small in California and southeastern Australia, while
residents in these regions were severely threatened by frequent wild-
fires over the past decade.

Temporal changes in the global WUI

From 2000 to 2020, the global WUT area according to our WUI
maps in 2000, 2010, and 2020 increased by more than a third to a
total of 508,161 km?. Figure 3A shows a remarkable positive change
in the WUI extent clustered in East Asia, mainly due to China’s rap-
id WUI expansion. The Southern Hemisphere, on the other hand,
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has remained relatively stable since 2000. Regional decreases in
WUT areas were also observed, but increases in WUTI areas (>0.5%
on a 0.1° grid) were greater than decreases (<—0.5% on a 0.1° grid)
(see Fig. 3A and fig. S7). Figure 3A shows that the WUI expansion
was most prominently concentrated in the conterminous United
States and eastern China since 2000. For example, some regions of
Guangdong Province in China and California in the United States
have experienced a substantial increase exceeding 30%. In compari-
son, a shrinking trend of the WUI was evident in various regions,
including southeastern Australia, northern Europe, and western
Russia. Regions with dense WUI coverage in 2020 are likely to have
experienced rapid WUI expansion since 2000. Sub-Saharan Africa,
for instance, which has a dense distribution of WUI in 2020, has
seen the WUI increased rapidly over the past two decades. However,
parts of the northeastern United States and northern Europe, where
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Fig. 3. The spatial extent of the global WUI change during 2000-2020. (A) WUI changes between 2000 and 2020 in a 0.1° grid. The spatial extent of absolute WUI
changes is shown in green (areas where the WUI lost) and purple (areas the WUI increased). Grids with slight changes (within +0.5%) are set to transparent. (B) Distribu-
tions of WUI changes in a 0.1° grid presented by density plots and box plots. Blue, yellow, and red denote changes in 2000-2010, 2010-2020, and 2000-2020, respec-
tively. The center line and edges of the box represent the median, first quartiles, and the third quartiles, respectively. The whiskers stretch from the box to cover 1.5 times
interquartile range. The dense points at both ends of the whiskers are outliers. Given the long-tailed nature of the data, we cut the x axis to display only change within the
range of +2%. (C to E) Original 30-m WUI changes in 2000, 2010, and 2020 are shown in three regions located in eastern United States (C), South Africa (D), and Southeast
China (E). The colors of pixels correspond to the WUI's existing time, detailed in the right legend. The colors blue, light orange, and pink indicate that the pixel was identi-
fied as WUI area in a particular year, 2000, 2010, and 2020. Green, purple, and orange pixels indicate that WUI areas existed in 2000 and 2010, 2000 and 2020, 2010 and
2020, respectively. Moreover, yellow pixels indicate where WUI persisted from 2000 to 2020. The background terrain map was a stamen terrain map provided by the gg-
map R package (65).

8 November 2024

Guo etal., Sci. Adv. 10, eado9587 (2024) 40f 12

202 ‘0T JS0WeA0N U0 610°80Us 195" MAMM//SO1Y LWoJ) papeoumoq



SCIENCE ADVANCES | RESEARCH ARTICLE

WUT areas were prevalent in 2020, showed a notable decline in WUI 20102020 experienced an astonishing surge, accounting for 85% of the
areas from 2000 to 2020. This specific phenomenon could be aresult ~ WUI growth. A similar uneven growth rate was also observed in some
of the decline in the local urban area shown in Fig. 4A. GEFED regions. For example, Equatorial Asia experienced 95.97% of the

We further explored the changes of WUI areas in 2000-2010 and  new WUI between 2010 and 2020, and Boreal Asia even experienced a
2010-2020 (see fig. S11). We found that most of the new WUI was first ~ slight decline between 2000 and 2010 (table S1). Among 14 regions, the
identified in 2020, indicating an inconstant rate of global WUI changes  lowest contribution of new WUI between 2010 and 2020 was 50.17%,
during two periods (Fig. 3B). The first decade (2000-2010) contributed  observed in the NHSA. Fig. 3 (C to E) further illustrates the unbalanced
only 15% to the total increase in the WUI from 2000 to 2020, while  growth of WUI areas at 30-m resolution.
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Fig. 4. Land cover change characterizing WUI trends worldwide. (A) Overlapping changes in wildland and urban areas contributed to absolute changes in the WUI (%
per 0.1° grid cell) from 2000 to 2020, with colors delineated by the proportion of the WUI shift caused by land cover change. (B) Distribution of grid values from the loca-
tions in (A). The heatmap shows grids summed at 1% intervals for both wildland-caused and urban-caused WUI changes simultaneously. The annotation on the heatmap
refers to the number of grids in each group. The color classification is consistent with (A). For example, purple represents areas where both urban and wildland changes
led to WUI expansion. The color intensity in the heatmap indicates the number of grids summarized by group, with deeper colors representing larger quantities. (C)
Global summary of wildland and urban contributions to the WUI change. The black bars show WUI areas in 2000, 2010, and 2020, and the height of the colored bars indi-
cates the WUI change in the corresponding period. Relative changes in 2000-2010 and 2010-2020 were calculated on the basis of WUI areas in 2000 and 2010, respec-
tively.
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WUI trends directly impacted by urbanization and wildlands
On the basis of our WUI definition, wildland and urban distribu-
tion are the two factors that have directly driven change in the
WUI. We found that urban expansion was dominantly responsible
for the rapid expansion of the WUI worldwide (Fig. 4, A and C),
consistent with an unprecedented growth rate of global urbaniza-
tion (51). The growth attributed to urbanization of the WUT has
reached 589,914 km? which is considerably greater than the net in-
crease in the global WUI from 2000 to 2020. Furthermore, the dis-
tribution of 0.1° grid cells supports this conclusion, with most grids
experiencing the WUI growth due to urbanization (Fig. 4B). Figure
4C shows a rather weak influence of the remaining factors, includ-
ing urban area decline and wildland dynamics, on the global WUI
change. All factors except urbanization had roughly equivalent con-
tributions to the WUI and remained stationary over the past two
decades. However, contrasting phenomena were observed in some
regions and countries. For example, vegetation-induced WUI in-
creases overweighted urbanization-related WUI increases in the
Middle East (MIDE), EURO, and Southeast Asia (SEAS) according
to fig. S13. In addition, the loss of vegetation and urban areas re-
sulted in a large portion of the WUIT reduction scattered worldwide
(fig. S12).

The acceleration of urban expansion resulted in the WUI ex-
panding by 7.9 and 31.7%, respectively, during two periods (Fig.
4C), leading to an abrupt increase in the speed of WUI expansion.
At the regional level, a remarkable increase in urban areas changed
the spatial pattern of WUI trends in 2010-2020 compared to 2000-
2010, such as in eastern Europe and the Democratic Republic of
the Congo (fig. S12). Compared to 2000-2010, most GFED regions
experienced increased urbanization-related WUI growth in 2010-
2020, as reported in table S6. The only exception is EURO, where the
growth of WUI areas directly driven by urban areas remained
relatively constant.

The patterns between fire activity and WUI

Wildfire risk has increased over the past two decades despite a slight
decrease in fire observations (fig. S4, A and B). To investigate the
potential for local communities to be exposed to wildfire events in
the WUI, we further explored the spatial relationship between WUI
areas and wildfire activities. Specifically, to quantify how fire activity
and intensity varied with proximity to the WUI, we adopted each
MODIS fire observation as one fire hot spot and calculated its dis-
tance to the nearest WUI (hereafter Dis2WUI, see Materials and
Methods). We selected fire radiative power (FRP) and fire count as
critical indexes to represent fire activities in and near the WUL Fire
hot spots were categorized into different FRP ranges (10-MW inter-
val) and by their distance from the nearest WUI (1-km interval). In
2020, there were 1.09% of fire hot spots located in the WUI and
32.29% of fire hot spots located within 5 km of the WUI. Among the
14 GFED regions, CEAS had the most fire hot spots located in the
WUT in 2020, with 4.84% of total fire hot spots. Other regions such
as TENA, EURO, and MIDE also experienced more than 3% of fire
hot spots located in the WUI in 2020 (table S7).

From 2018 to 2022, the majority of fire hot spots, specifically
96.06% in the WUI and 94.23% within 5 km of the WUI, had a FRP
of 100 MW or less. As shown in fig. S14B, low-intensity fire hot
spots, defined as FRP less than 20.4 MW (50th percentile FRP, cal-
culated from all 2020 fire observations), occurred predominantly
within the WUTL. In contrast, high-intensity fire hot spots, defined as

Guo etal., Sci. Adv. 10, eado9587 (2024) 8 November 2024

FRP greater than 387.6 MW (99th percentile FRP, calculated from
all 2020 fire observations), were most likely to occur between 2 and
9 km from the WUI. These zones had more than 1500 fires per year
in each 1-km bin (fig. S14C). The large number of wildfires in the
WUI supports the hypothesis that the WUI is a fire-prone area
where human lives and assets are vulnerable to wildfire and high-
lights the urgent need to implement more aggressive policies in the
WUI when managing fire regimes.

As Dis2WUI increased, the number of fires decreased (fig.
S14A). This phenomenon was also evident for all regions except
South America (Fig. 5C), where fire intensities appeared to increase
slightly with increasing Dis2WUI, suggesting that natural forces
(e.g., lightning) may play a greater role in shaping local fire regimes.
The stacked top plot in Fig. 5A shows that the relationship between
summed FRP and Dis2WUI approximately fits an inverted U-
shaped curve for fire hot spots with FRP less than 100 MW and de-
tected within the 5-km buffer of WUI areas. The inflection points of
the curves shift away from the WUI as FRP increases, indicating
that fire hot spots closer to the WUI tend to burn with less intensity.
We also analyzed the change in fire activities. Comparing wildfire
records near the WUT from 2008 to 2012 and 2018 to 2022, Fig. 5B
shows that fire observations with FRP < 20 MW increased within
the 1-km buffer of the WUL. In contrast, fire activities decreased in
areas at least 3 km away from the WUI. Similar variation trend was
observed in regions such as MIDE and Northern Hemisphere Africa
(NHAF). Since 2010, Central America (CEAM), SEAS, and South-
ern Hemisphere Africa (SHAF) has become more prone to wildfires
in and near the WUTI (Fig. 5D). The uneven change in human expo-
sure to wildfires since 2010 in and near the WUI may be due to the
gradual intensification of human activities and the rapid expansion
of the WUL

DISCUSSION

Understanding wildfire-society interactions requires tracking long-
term global WUI changes at fine resolution. However, existing glob-
al WUI maps either offer high-resolution (10 m) snapshots for a
single year (6) or track changes in the WUT at a coarser resolution
(400 m) (37). Using satellite-derived land cover data, our study pro-
vided global WUI distribution data with a fine resolution (30 m)
available in 2000, 2010, and 2020. By evaluating the temporal change
of the global WUI, we revealed the rapid growth of the WUI across
the world. A distinctive contribution of our research is to quantify
the immediate causes of WUI change that can be directly attributed
to the transition from other land cover types to urban and wildland
buffers. Previous studies have shown that housing growth is the pri-
mary driver of WUI expansion (7, 28) by comparing population
growth with housing growth. Using the definition that WUI is
where wildland buffers and urban buffers overlap, we first demon-
strated that urbanization is a key driver of the WUI expansion, em-
phasizing the impact of human activities in introducing fire threats
to communities. Last, we investigated the pattern of wildfire occur-
rence not only within the WUI but also in the surrounding regions.
We found that low-intensity fire hot spots tend to cluster around
WUI areas. Scholars (29, 31) have demonstrated that the frequency
of fire ignitions and burn severity are typically lower in densely pop-
ulated areas by studying building structures in the WUI Our results
therefore confirm these findings on a more macroscale. The fire re-
gimes around the WUI could be a comprehensive result of denser
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respectively. (D) Regional differences in fire activities in and near the WUI from 2008 to 2012 and 2018 to 2022 for 14 GFED regions. The red and blue lines represent changes in fire
counts and FRP, respectively. The x and y axes in the heatmap (A) and (B) denote Dis2WUI and FRP for each fire hot spot. The first column in the heatmap (A) and (B) depicts hot spots
falling in the WUI. The numbers on the heatmap are the mean fire counts over 5 years [x10% in (A) and x10% in (B)], and the grid color represents the mean value of summed FRP in
each group. The shadow areas of lines in (A) and (C) depict the minimum and maximum value of fire counts or FRP from 2018 to 2022. Note that we used the 2010 WUI map to cal-
culate Dis2WUI for fires from 2008 to 2012 and the 2020 WUI map for fires from 2018 to 2022. AUST, Australia and New Zealand; BOAS, Boreal Asia; BONA, Boreal North America;
CEAM, Central America; CEAS, Central Asia; EQAS, Equatorial Asia; EURO, Europe; MIDE, Middle East; NHAF, Northern Hemisphere Africa; NHSA, Northern Hemisphere South America;
SEAS, Southeast Asia; SHAF, Southern Hemisphere Africa; SHSA, Southern Hemisphere South America; TENA, Temperate North America.
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human-caused ignitions, more intensive firefighter resources, and
human-caused vegetation fragmentation around the WUIL Our
finding reveals that fire occurrences with high FRP value were pri-
marily observed in areas adjacent to the WUI, consistent with previ-
ous study that human-ignited fires result in higher fire intensity (52).

Given the different criteria used to identify WUI areas, we re-
ported relatively lower WUTI areas and populations living within
the WUI. However, our results show a similar spatial pattern to pre-
vious WUT maps at both global and regional scales (tables S2 and
S4). All three global WUI maps are consistent with regional WUI
assessments, for example, showing a high concentration of WUT ar-
eas in the eastern United States (7, 53). Steady growth of the WUI
has been observed in the conterminous United States from 1990 to
2010 (7) and globally from 1985 to 2020 (37). Our results confirm
the upward trend and show that it has steepened since 2010. In
Europe, we also found a similar regional WUI spatial pattern that
concentrated in western Portugal, Belgium, and the coastline of
the Mediterranean (25). However, differences were observed when
comparing with WUI patterns mapped at higher resolution, which
were based on the definition of the WUI from the U.S. Federal Reg-
ister. Previous work (28, 53) indicated that the WUI in California
was largely concentrated along the western coastline and west of the
Sierra Nevada Mountain range, while our evaluation indicated that
the WUT was also sparsely distributed in central and southeastern
California (fig. S10).

We acknowledge some limitations in our study, particularly re-
garding the definition of the WUI, the original input data, and un-
certainties in data processing. The FAO definition of the WUI
considers all built-up areas as urban, ignoring differences in the
density of building materials of settlement structures from rural
areas to urban centers. By applying a consistent definition of the
WUI, we acknowledge that areas where residents are at risk of ex-
posure to wildfires tends to be underestimated in communities
proximate to nature while overestimated in a cold or sparsely pop-
ulated area. Second, because of the limited temporal resolution (10
years) of the input land cover dataset, we could only calculate dis-
continuous global WUT areas for three versions. Variability in the
GlobeLand30 dataset presents another uncertainty, as the avail-
ability of input data may have been lower in earlier years. This
limitation could be better addressed with more accurate datasets
in future. Third, computational errors may occur during data pro-
cessing, such as merging and resampling raster data. Since uncer-
tainty levels remained constant in 2000, 2010, and 2020, our main
conclusion that the WUI is widespread worldwide and has in-
creased markedly over the two decades should remain virtually
unchanged. Last, our study only examined the spatial correlation
between wildfires and WUI areas, without exploring the interac-
tion between wildfires and human society. Our analysis treated
urban areas as synonymous with human society, assuming that the
probability of a fire occurring outside the WUT but within urban-
ized areas was extremely low.

Our 30-m resolution mapping of the WUI could provide a solid
foundation for future relevant research. For example, future re-
search could examine a more refined relationship between wildfire
and socioeconomic losses using population or other socioeconomic
datasets, which could help manage fire regimes more effectively. By
using projections of land cover change and climate data under
Shared Socioeconomic Pathways, we could further investigate how
WUI areas and interior wildfire risk change under different future

Guo etal., Sci. Adv. 10, eado9587 (2024) 8 November 2024

scenarios. Because the WUI is not identical to the fire-prone area
where wildfires frequently occur and where residents are most likely
to be exposed to wildfires, it is critical to identify different levels of
fire risk in WUTI areas and to identify key factors that influence wild-
fire risk variability in WUT areas. One possible assumption is that
the relationship between human activity intensity and wildfire risk
shows an inverted U-shaped pattern. We only examined the direct
causes of WUI changes, and more detailed analysis should be con-
ducted in the future to find out the underlying factors that contrib-
ute to WUI changes, such as population growth and vegetation
cover change.

With this work, we have established a workflow for mapping
the WUI that will allow for more convenient updating of the WUI
using rapidly developed land cover datasets in the future (54). The
global distribution of WUT areas can therefore be a powerful poli-
cy tool to address wildfire-related threats at the individual and
governmental levels. Governments in countries that have experi-
enced large increase in the WUI since 2000, as shown in our re-
sults, such as eastern China, the United States, and Nigeria, should
use more policy tools and allocate resources to WUI areas. It is
crucial for these regions to strategically control the spread of ur-
ban development into wildlands to slow down the growth of WUI
areas. More targeted policies and guidelines could be developed
and implemented using our fine WUI maps, including reducing
fuel loads, educating homeowners, strengthening the patrols, and
optimizing fire stations (7). However, because urbanization was
the primary driving force behind WUT expansion, it is impossible
to effectively address wildfire challenges without preventing vege-
tation fragmentation. The results of this study demonstrate that
governments should fully consider fuel situations when expanding
community borders during urban planning. In addition, limited
firefighting resources should be allocated to areas within 3 km of
the WUI, which have experienced increased wildfires in recent
years. By leveraging our WUI maps, global insurance companies
could also more accurately assess regional fire risks posed to hu-
man society and price property insurance policies. At an individu-
al level, residents living in the WUT near vegetation are advised to
be cautious about burning open fires in flammable vegetation, as
human ignitions tend to exacerbate wildfire hazards around WUI
areas (22).

MATERIALS AND METHODS

Experimental design

In this study, we conducted a comprehensive analysis of the global
WUI evolution at three time points (separated by 10-year intervals)
over a 20-year period from 2000 to 2020, at a high-resolution (30 m)
scale. Initially, we created 400-m buffers around wildlands (includ-
ing forests, shrublands, and grasslands) and 200-m buffers around
urban areas using GlobeLand30 (43) land cover data and then delin-
eated the global WUI by overlaying these buffers. The WUI maps in
2000, 2010, and 2020 allow us to investigate how WUI areas change
around the world. To further understand WUI dynamic, we ana-
lyzed the direct causes of WUI changes at pixel level by comparing
the land cover type in different periods. Ultimately, we tried to un-
derline the significance of the WUI in fire management and risk
mitigation. With active fires detected by MODIS, we calculated the
distance from each fire to the nearest WUI area and illustrated the
spatial relationship of wildfires and WUTI areas.
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Data sources

Global land cover data

Since high spatial resolution satellite images covering the world be-
came available, a bunch of global land cover datasets finer than
100-m resolution have been developed (55, 56). However, most fine-
resolution land cover datasets only contain a single year release,
such as FROM-GLC10 (10-m resolution in 2017), and GLC_FCS30
(57) (30-m resolution in 2015). While GlobeLand30 satisfies high
spatial resolution and long temporal coverage, we chose it as the
global land cover data to map WUL Developed with a consistent
classification system and methods by the Chinese Ministry of Natu-
ral Resources in 2000, 2010, and 2020, GlobeLand30 is a compre-
hensive set of global 30-m resolution land cover products. The
accuracy assessment was conducted using 154,586 samples and
more than 230,000 samples for GlobeLand30 V2010 and V2020, re-
spectively, resulting in an overall accuracy of 83.50% for V2010
(with a kappa coefficient of 0.78) and 85.72% for 2020 (with a kappa
coefficient of 0.82). The worldwide high spatial resolution, long-
term consistency, and reliability made it widely used to monitor
land cover change.

GlobeLand30 provides 10 land cover classification types: culti-
vated land, forest, grassland, shrubland, wetland, water bodies, arti-
ficial surfaces, permanent snow and ice, tundra, and bare land. Forest
refers to land with trees, with a canopy coverage of more than 30%.
Grassland refers to land covered by natural herbaceous vegetation
with coverage greater than 10%, including steppe, meadow, savanna,
desert steppe, and urban artificial grassland. Shrubland refers to
land covered by shrubby with shrub coverage greater than 30%, in-
cluding montane, deciduous, and evergreen, and desert areas with
shrub coverage greater than 10%. Artificial surfaces are formed by
artificial construction activities, including all kinds of residential
land, industrial and mining facilities, transportation facilities, and
more, excluding the contiguous green land and water bodies in-
side the construction land. The validation of GlobeLand30 V2010
showed that user’s accuracy of artificial surfaces, forest, grassland,
and shrubland is 86.70, 83.58, 72.16, and 72.64%, respectively. The
misclassification within land cover types of wildland ( grassland,
shrubland, and forest), such as mistakenly labeling shrubland as
forest, slightly influenced on the final result. Although the potential
urban artificial grassland contained in grassland would lead to ex-
aggeration of WUI areas inside cities. We acknowledge that Globe-
Land30 assigned each pixel with a single class, unable to provide
information for mixed pixels, which might affect the accuracy of
WUI identification.

Active wildfire product

We used MODIS C6.1 MCD14ML active fire product to depict the
fire regime nearby the WUI area provided by the Fire Information
for Resource Management System (FIRMS). We chose MCD14ML
due to its extensive temporal coverage from 2003 to 2020, which
facilitates the analysis of spatial relationship between fires and WUI
over time. Furthermore, MCD14ML is one of the most widely used
fire observation products, containing all Terra and Aqua MODIS
fire pixels. The spatial resolution of MCD14ML is 1 km, and the co-
ordinates of each detection are the longitude and latitude of the cen-
ter point of the 1-km pixel but not exactly where the fire was
detected. The overall omission error of fire detections was 86.2%.
Generally, the fire size is smaller than the pixel (58). Each record
indicates that one or more fires occurred within the pixel, while we
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considered each record as an independent wildfire event. The ap-
proach implies that larger wildfires extending beyond 1 km? or per-
sisting over several days might be identified as multiple distinct
fire events.

The MCD14ML wildfire product provides daily fire information
with the latitude and longitude of the fire pixels, observed date, FRP,
and more. Four fire types are detected in MCD14ML, including pre-
sumed vegetation fire, an active volcano, other static land sources,
and offshore fire. We only included fire observations categorized as
vegetation fire for analysis. However, we acknowledge that some
small fires might not be detected in MCD14ML product out of its
relatively coarse spatial resolution, as previous studies revealed
(59, 60).

WUI identification and global mapping

The WUI is where wildland and urban areas interact. Because the
natural environment and the strength of human activities vary
among countries, no worldwide standard identification of WUI
areas exists. In North America, most scholars identified the WUI
according to the definition published by the U.S. Federal Register
(7, 27, 61), which divides WUI into two categories: intermix WUI
and interface WUL. Intermix WUI is where man-made structures
are densely located with wildland fuel scattered. Interface WUTI has
a clear boundary between the urban area and the wildland area. In
Europe, however, the WUI definition maintained a large variety
(22). For example, a study in Spain divided the WUT into three
groups based on vegetation type (62). In Portugal, the WUI was de-
fined as direct and indirect by reclassifying the land cover map (63).

To enable the production of WUI maps at fine spatial resolution
with long temporal series, we used the European identification cri-
terion of the WUI, which was first raised by the FAO (42), based on
the definition of WUTI areas as where urban buffers and wildland
buffers overlay. Under our definition, the WUI is not classified into
intermix WUI and interface WUI. The criterion was widely used in
European countries with legal buffer distances ranging from 50 to
200 m for urban areas and 100 to 400 m for wildland areas across
different national legal frameworks (25, 64). Considering various
fire weather conditions and firefighting abilities across regions, we
chose 200 and 400 m as buffer distances for urban and wildland ar-
eas. The buffer distances are relatively large to minimize the omis-
sion of potentially fire-threatened areas.

As shown in Fig. 1B, we first defined urban layers as artificial
surfaces in GlobeLand30. The wildland layer created from the com-
bination of forest, grassland, and shrubland types. We identified the
WUI at a 30-m resolution scale. To improve computing efficiency,
we first split each 30-m resolution land cover product tile into
400 blocks (around 1500 m in both width and height), each side
with a 600-m (20 pixels) buffer to mitigate the edge effect. Subse-
quently, we separated wildland and urban layers in each block. We
generated 200-m buffer zones for urban and 400-m buffer zones for
wildland and derived WUI areas by overlapping the wildland
and urban buffer zones. To further analyze and summarize the
global WUI, we reprojected all 30-m tiles to 0.01° resolution in the
WGS84 coordinate system using the average weight method pro-
vided by GDALs gdalwarp function (https://gdal.org/programs/
gdalwarp.html) and merged them into a global map. The pixel
value in the 0.01° WUI map refers to the area proportion of WUI
areas in each grid. We derived WUI changes in different periods
by directly comparing global mosaic WUI maps at 0.01° resolution.
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When displaying global WUI distribution and change, we aggre-
gated 0.01° global WUT areas into 0.1° grid cells.

Quantifying the direct causes of WUI changes

The land cover change directly affects WUI changes. Newly in-
creased and lost WUI areas directly caused by the change of urban
and wildland. To identify the immediate cause of WUI changes in
30-m pixels, we observed land cover type transformations. For ex-
ample, if a new WUI pixel newly appeared in 2010 was located in an
urban buffer but not located in a wildland buffer in 2000, then the
immediate cause of the WUI increase in the pixel is wildland expan-
sion. For pixels where wildland and urban simultaneously lead to
WUI change, we assumed that wildland and urban contribute
equally, i.e., 50%, respectively. We listed all potential situations of
land cover change and the corresponding direct factors of WUI
change in table S5. To match the resolution of the global land cover
dataset, we identified direct factors of WUI changes at 30-m resolu-
tion based on original land cover data used for the WUTI identifica-
tion. Similarly, we transformed direct factors identification results at
30-m resolution into 0.01° global map with two layers, urban contri-
bution and wildland contribution. The values of the aggregated
pixel indicate the absolute change of the WUI proportion in the
pixel contributed by urban and wildland change. Moreover, the total
WUI change proportion in one pixel equals the sum of two immedi-
ate causes, i.e., the sum of the urban-related and wildland-related
change. We ignored the potential marginal effect when processing
merging and resampling of raster data. However, the inaccuracy
caused by the marginal effect will not affect the trends in the distri-
bution of WUI areas and its immediate causes, as the data and pro-
cessing method were kept consistent when generating products in
2000, 2010, and 2020.

Assessing fire regimes nearby the WUI

To better understand how the WUI expansion threatens human
society, we analyzed the spatial relationship between wildfire ob-
servations and WUT areas. We focused on each detected fire hot
spot without combining multiple hot spots into fire events and
transformed it into a spatial point with coordinates provided by
MCD14ML. Furthermore, the WUT at 30-m resolution was trans-
formed into polygons, merging adjacent WUI pixels. We calculat-
ed the great circle distance from points to the border of the nearest
WUI polygon. For fire hot spots located in the WUI, the nearest
distance to the WUT is set to 0. We assumed that all vegetation fire
hot spots were wildfires located either in the WUT or in wildland
areas, ignoring a few that were in urban areas. We solely consid-
ered fire hot spots with Dis2WUI less than or equal to 5 km, con-
centrating our study on fire occurrences that are more likely to
affect human communities directly. Last, we grouped fire observa-
tions by distance to the nearest WUI with 1-km intervals and FRP
with 10-MW intervals to display the fire distribution pattern
around the WUL

Supplementary Materials
This PDF file includes:
Supplementary Notes S1 to S6
Figs.S1to S16

Tables S1to S7

References

REFERENCES AND NOTES
1. S.L. Lewis, M. A. Maslin, Defining the anthropocene. Nature 519, 171-180 (2015).

Guo etal., Sci. Adv. 10, eado9587 (2024) 8 November 2024

20.

21.

22.

23.

. E.Weller, S.-K. Min, W. Cai, F. W. Zwiers, Y.-H. Kim, D. Lee, Human-caused Indo-Pacific warm

pool expansion. Sci. Adv. 2, e1501719 (2016).

. Y.Yang, L.Wu, Y. Guo, B. Gan, W. Cai, G. Huang, X. Li, T. Geng, Z. Jing, S. Li, X. Liang, S.-P. Xie,

Greenhouse warming intensifies north tropical Atlantic climate variability. Sci. Adv. 7,
eabg9690 (2021).

. J.R.R. Alavalapati, D. R. Carter, D. H. Newman, Wildland-urban interface: Challenges and

opportunities. Forest Policy Econ. 7, 705-708 (2005).

. J. D. Cohen, Preventing disaster: Home ignitability in the wildland-urban interface. J. For.

98, 15-21(2000).

. F.Schug, A. Bar-Massada, A. R. Carlson, H. Cox, T. J. Hawbaker, D. Helmers, P. Hostert,

D. Kaim, N. K. Kasraee, S. Martinuzzi, M. H. Mockrin, K. A. Pfoch, V. C. Radeloff, The global
wildland-urban interface. Nature 621, 94-99 (2023).

. V.C.Radeloff, D. P. Helmers, H. A. Kramer, M. H. Mockrin, P. M. Alexandre, A. Bar-Massada,

V. Butsic, T. J. Hawbaker, S. Martinuzzi, A. D. Syphard, S. I. Stewart, Rapid growth of the US
wildland-urban interface raises wildfire risk. Proc. Natl. Acad. Sci. U.S.A. 115,3314-3319
(2018).

. P.Jain, D. Castellanos-Acuna, S. C. P. Coogan, J. T. Abatzoglou, M. D. Flannigan, Observed

increases in extreme fire weather driven by atmospheric humidity and temperature. Nat.
Clim. Change 12, 63-70 (2022).

. C.X.Cunningham, G. J. Williamson, D. M. J. S. Bowman, Increasing frequency and

intensity of the most extreme wildfires on Earth. Nat. Ecol. Evol. 8, 1420-1425 (2024).

. D.M.J.S.Bowman, G. J. Williamson, J. T. Abatzoglou, C. A. Kolden, M. A. Cochrane,

A. M. S. Smith, Human exposure and sensitivity to globally extreme wildfire events. Nat.
Ecol. Evol. 1,0058 (2017).

. Y.Liang, D. Sengupta, M. J. Campmier, D. M. Lunderberg, J. S. Apte, A. H. Goldstein,

Wildfire smoke impacts on indoor air quality assessed using crowdsourced data in
California. Proc. Natl. Acad. Sci. U.S.A. 118, 2106478118 (2021).

. F.H.Johnston, N. Borchers-Arriagada, G. G. Morgan, B. Jalaludin, A. J. Palmer,

G. J. Williamson, D. M. J. S. Bowman, Unprecedented health costs of smoke-related PM, 5
from the 2019-20 Australian megafires. Nat. Sustain. 4, 42-47 (2020).

. R.Xu, P.Yu, M. J. Abramson, F. H. Johnston, J. M. Samet, M. L. Bell, A. Haines, K. L. Ebi, S. Li,

Y. Guo, Wildfires, global climate change, and human health. N. Engl. J. Med. 383,
2173-2181(2020).

. S.M. Holm, M. D. Miller, J. R. Balmes, Health effects of wildfire smoke in children and

public health tools: A narrative review. J. Expo. Sci. Environ. Epidemiol. 31, 1-20 (2021).

. M. A. Moritz, E. Batllori, R. A. Bradstock, A. M. Gill, J. Handmer, P. F. Hessburg, J. Leonard,

S. McCaffrey, D. C. Odion, T. Schoennagel, A. D. Syphard, Learning to coexist with wildfire.
Nature 515, 58-66 (2014).

. D.B. McWethy, T. Schoennagel, P. E. Higuera, M. Krawchuk, B. J. Harvey, E. C. Metcalf,

C. Schultz, C. Miller, A. L. Metcalf, B. Buma, A. Virapongse, J. C. Kulig, R. C. Stedman,
Z. Ratajczak, C. R. Nelson, C. Kolden, Rethinking resilience to wildfire. Nat. Sustain. 2,
797-804 (2019).

. M.Burke, A. Driscoll, S. Heft-Neal, J. Xue, J. Burney, M. Wara, The changing risk and burden

of wildfire in the United States. Proc. Natl. Acad. Sci. U.S.A. 118, 2011048118 (2021).

. D.Wang, D. Guan, S. Zhu, M. M. Kinnon, G. Geng, Q. Zhang, H. Zheng, T. Lei, S. Shao,

P.Gong, S. J. Davis, Economic footprint of California wildfires in 2018. Nat. Sustain. 4,
252-260 (2021).

. D.M.J.S.Bowman, C. A. Kolden, J. T. Abatzoglou, F. H. Johnston, G. R. van der Werf,

M. Flannigan, Vegetation fires in the Anthropocene. Nat. Rev. Earth Environ. 1, 500-515
(2020).

G. Chen, Y. Guo, X. Yue, S.Tong, A. Gasparrini, M. L. Bell, B. Armstrong, J. Schwartz,

J.J. K. Jaakkola, A. Zanobetti, E. Lavigne, P. H. Nascimento Saldiva, H. Kan, D. Royé,

A. Milojevic, A. Overcenco, A. Urban, A. Schneider, A. Entezari, A. M. Vicedo-Cabrera,

A. Zeka, A. Tobias, B. Nunes, B. Alahmad, B. Forsberg, S.-C. Pan, C. iﬁiguez, C. Ameling,

C. De la Cruz Valencia, C. Astrom, D. Houthuijs, D. Van Dung, E. Samoli, F. Mayvaneh,

F. Sera, G. Carrasco-Escobar, Y. Lei, H. Orru, H. Kim, I.-H. Holobaca, J. Kysely, J. P. Teixeira,

J. Madureira, K. Katsouyanni, M. Hurtado-Diaz, M. Maasikmets, M. S. Ragettli,

M. Hashizume, M. Stafoggia, M. Pascal, M. Scortichini, M. d. S. Z. S. Coélho,

N.Valdés Ortega, N. R. I. Ryti, N. Scovronick, P. Matus, P. Goodman, R. M. Garland,

R. Abrutzky, S. O. Garcia, S. Rao, S. Fratianni, T. N. Dang, V. Colistro, V. Huber, W. Lee,

X. Seposo, Y. Honda, Y. L. Guo, T. Ye, W. Yu, M. J. Abramson, J. M. Samet, S. Li, Mortality risk
attributable to wildfire-related PM,.5 pollution: A global time series study in 749
locations. Lancet Planet. Health 5, E579-E587 (2021).

T. Xue, G. Geng, J. Li, Y. Han, Q. Guo, F. J. Kelly, M. J. Wooster, H. Wang, B. Jiangtulu, X. Duan,
B.Wang, T. Zhu, Associations between exposure to landscape fire smoke and child
mortality in low-income and middle-income countries: A matched case-control study.
Lancet Planet. Health 5, E588-E598 (2021).

J. K. Balch, B. A. Bradley, J. T. Abatzoglou, R. C. Nagy, E. J. Fusco, A. L. Mahood, Human-
started wildfires expand the fire niche across the United States. Proc. Natl. Acad. Sci. U.S.A.
114, 2946-2951 (2017).

M. A. Cochrane, D. M. J. S. Bowman, Manage fire regimes, not fires. Nat. Geosci. 14,
455-457 (2021).

100f 12

202 ‘0T JS0WeA0N U0 610°80Us 195" MAMM//SO1Y LWoJ) papeoumoq



SCIENCE ADVANCES | RESEARCH ARTICLE

24,

25.

26.

27.

28.

29.

30.

31.

32

33.

34.

35.
36.
37.

38.

39.

40.

41.
42.

43.

44,

45.

46.

47.

48.

49.

50.

Guo etal., Sci. Adv. 10, eado9587 (2024)

M.-A. Parisien, Q. E. Barber, K. G. Hirsch, C. A. Stockdale, S. Erni, X. Wang, D. Arseneault,

S. A. Parks, Fire deficit increases wildfire risk for many communities in the Canadian
boreal forest. Nat. Commun. 11,2121 (2020).

S. Modugno, H. Balzter, B. Cole, P. Borrelli, Mapping regional patterns of large forest fires
in Wildland-Urban interface areas in Europe. J. Environ. Manage. 172, 112-126 (2016).

A. Bar Massada, V. C. Radeloff, S. I. Stewart, T. J. Hawbaker, Wildfire risk in the wildland-
urban interface: A simulation study in northwestern Wisconsin. For. Ecol. Manage. 258,
1990-1999 (2009).

J. P. Arganaraz, V. C. Radeloff, A. Bar-Massada, G. |. Gavier-Pizarro, C. M. Scavuzzo,

L. M. Bellis, Assessing wildfire exposure in the Wildland-Urban Interface area of the
mountains of central Argentina. J. Environ. Manage. 196, 499-510 (2017).

S. Li, V. Dao, M. Kumar, P. Nguyen, T. Banerjee, Mapping the wildland-urban interface in
California using remote sensing data. Sci. Rep. 12, 5789 (2022).

V. Fernandez-Garcia, D. Beltran-Marcos, L. Calvo, Building patterns and fuel features drive
wildfire severity in wildland-urban interfaces in Southern Europe. Landsc. Urban Plan.
231, 104646 (2023).

Y. Zhang, H. S. He, J. Yang, The wildland-urban interface dynamics in the southeastern
U.S. from 1990 to 2000. Landsc. Urban Plan. 85, 155-162 (2008).

M. L. Chas-Amil, J. Touza, E. Garcia-Martinez, Forest fires in the wildland-urban interface:
A spatial analysis of forest fragmentation and human impacts. Appl. Geogr. 43, 127-137
(2013).

M. Nielsen-Pincus, R. G. Ribe, B. R. Johnson, Spatially and socially segmenting private
landowner motivations, properties, and management: A typology for the wildland urban
interface. Landsc. Urban Plan. 137, 1-12 (2015).

M. Polinova, L. Wittenberg, H. Kutiel, A. Brook, Reconstructing pre-fire vegetation
condition in the wildland urban interface (WUI) using artificial neural network. J. Environ.
Manage. 238, 224-234 (2019).

M. D. Caggiano, W.T.Tinkham, C. Hoffman, A. S. Cheng, T. J. Hawbaker, High resolution
mapping of development in the wildland-urban interface using object based image
extraction. Heliyon 2,e00174 (2016).

F.J. Alcasena, C. R. Evers, C. Vega-Garcia, The wildland-urban interface raster dataset of
Catalonia. Data Brief 17, 124-128 (2018).

L. M. Johnston, M. D. Flannigan, Mapping Canadian wildland fire interface areas. Int. J.
Wildland Fire 27,1-14 (2017).

B. Chen, S.Wu, Y. Jin, Y. Song, C. Wu, S. Venevsky, B. Xu, C. Webster, P. Gong, Wildfire risk for
global wildland-urban interface areas. Nat. Sustain. 7, 474-484 (2024).

A.E. Larsen, A.J. MacDonald, A. J. Plantinga, Lyme disease risk influences human
settlement in the wildland-urban interface: Evidence from a longitudinal analysis of
counties in the northeastern United States. Am. J. Trop. Med. Hyg. 91, 747-755 (2014).

G. D. Jenerette, K. E. Anderson, M. L. Cadenasso, M. Fenn, J. Franklin, M. L. Goulden,

L. Larios, S. Pincetl, H. M. Regan, S. J. Rey, L. S. Santiago, A. D. Syphard, An expanded
framework for wildland-urban interfaces and their management. Front. Ecol. Environ. 20,
516-523 (2022).

K. C. Seto, B. Guineralp, L. R. Hutyra, Global forecasts of urban expansion to 2030 and
direct impacts on biodiversity and carbon pools. Proc. Natl. Acad. Sci. U.S.A. 109,
16083-16088 (2012).

J.Chen, X. Cao, S. Peng, H. Ren, Analysis and applications of GlobeLand30: A review. ISPRS
Int. J. Geo Inf. 6, 230 (2017).

FAO, Guidelines on Fire Management in Temperate and Boreal Forests, (2002); www.fao.
org/3/ag041e/ag041e.pdf.

J. Chen, J. Chen, A. Liao, X. Cao, L. Chen, X. Chen, C. He, G. Han, S. Peng, M. Lu, W. Zhang,
X.Tong, J. Mills, Global land cover mapping at 30m resolution: A POK-based operational
approach. ISPRS J. Photogramm. Remote Sens. 103, 7-27 (2015).

M. W. Jones, J.T. Abatzoglou, S. Veraverbeke, N. Andela, G. Lasslop, M. Forkel, A. J. P. Smith,
C. Burton, R. A. Betts, G. R. van der Werf, S. Sitch, J. G. Canadell, C. Santin, C. Kolden,

S.H. Doerr, C. Le Quéré, Global and regional trends and drivers of fire under climate
change. Rev. Geophys. 60, e2020RG000726 (2022).

S.S.Rabin, B. . Magi, E. Shevliakova, S. W. Pacala, Quantifying regional, time-varying
effects of cropland and pasture on vegetation fire. Biogeosciences 12, 6591-6604 (2015).
L. Giglio, W. Schroeder, A global feasibility assessment of the bi-spectral fire temperature
and area retrieval using MODIS data. Remote Sens. Environ. 152, 166-173 (2014).

G. R. van der Werf, J.T. Randerson, L. Giglio, G. J. Collatz, M. Mu, P. S. Kasibhatla,

D. C. Morton, R. S. DeFries, Y. Jin, T.T. van Leeuwen, Global fire emissions and the
contribution of deforestation, savanna, forest, agricultural, and peat fires (1997-2009).
Atmos. Chem. Phys. 10, 11707-11735 (2010).

B. 1. Magi, S. Rabin, E. Shevliakova, S. Pacala, Separating agricultural and non-agricultural
fire seasonality at regional scales. Biogeosciences 9, 3003-3012 (2012).

Y. Chen, D. C. Morton, N. Andela, G. R. van der Werf, L. Giglio, J. T. Randerson, A
pan-tropical cascade of fire driven by El Niflo/Southern Oscillation. Nat. Clim. Change 7,
906-911 (2017).

Q. Zhong, N. Schutgens, G. R. van der Werf, T. van Noije, S. E. Bauer, K. Tsigaridis,

T. Mielonen, R. Checa-Garcia, D. Neubauer, Z. Kipling, A. Kirkevég, D. J. L. Olivié,

8 November 2024

51.

52

53.

54.

55.

56.

57.

58.

59.

60.

61.

62.

63.

64.

65.

66.

67.

68.

69.

70.

H. Kokkola, H. Matsui, P. Ginoux, T. Takemura, P. Le Sager, S. Rémy, H. Bian, M. Chin, Using
modelled relationships and satellite observations to attribute modelled aerosol biases
over biomass burning regions. Nat. Commun. 13, 5914 (2022).

X. Liu, Y. Huang, X. Xu, X. Li, X. Li, P. Ciais, P. Lin, K. Gong, A. D. Ziegler, A. Chen, P. Gong,

J. Chen, G. Huy, Y. Chen, S. Wang, Q. Wu, K. Huang, L. Estes, Z. Zeng, High-spatiotemporal-
resolution mapping of global urban change from 1985 to 2015. Nat. Sustain. 3, 564-570
(2020).

S.Hantson, N. Andela, M. L. Goulden, J.T. Randerson, Human-ignited fires result in more
extreme fire behavior and ecosystem impacts. Nat. Commun. 13,2717 (2022).

V. C. Radeloff, D. P. Helmers, M. H. Mockrin, A. R. Carlson, T. J. Hawbaker, S. Martinuzzi, The
1990-2020 wildland-urban interface of the conterminous United States - geospatial data
(USDA Forest Service, ed. 3, 2022); https://doi.org/10.2737/rds-2015-0012-3.

P. Potapov, M. C. Hansen, A. Pickens, A. Hernandez-Serna, A. Tyukavina, S. Turubanova,
V. Zalles, X. Li, A. Khan, F. Stolle, N. Harris, X.-P. Song, A. Baggett, . Kommareddy,

A. Kommareddy, The global land cover and land use change dataset derived from the
landsat archive: First results. Front. Remote Sens. 3, 856903 (2022).

P.Gong, H. Liu, M. Zhang, C. Li, J. Wang, H. Huang, N. Clinton, L. Ji, W. Li, Y. Bai, B. Chen,

B. Xu, Z. Zhu, C. Yuan, H. Ping Suen, J. Guo, N. Xu, W. Li, Y. Zhao, J. Yang, C. Yu, X. Wang,

H. Fu, L. Yu, I. Dronova, F. Hui, X. Cheng, X. Shi, F. Xiao, Q. Liu, L. Song, Stable classification
with limited sample: Transferring a 30-m resolution sample set collected in 2015 to
mapping 10-m resolution global land cover in 2017. Sci. Bull. 64, 370-373 (2019).
P.Gong, J. Wang, L. Yu, Y. Zhao, Y. Zhao, L. Liang, Z. Niu, X. Huang, H. Fu, S. Liu, C. Li, X. Li,
W. Fy, C. Liu, Y. Xu, X. Wang, Q. Cheng, L. Hu, W. Yao, H. Zhang, P. Zhu, Z. Zhao, H. Zhang,
Y. Zheng, L. Ji, Y. Zhang, H. Chen, A. Yan, J. Guo, L. Yu, L. Wang, X. Liu, T. Shi, M. Zhu,

Y. Chen, G.Yang, P.Tang, B. Xu, C. Giri, N. Clinton, Z. Zhu, J. Chen, J. Chen, Finer resolution
observation and monitoring of global land cover: First mapping results with Landsat TM
and ETM+ data. Int. J. Remote Sens. 34, 2607-2654 (2013).

X. Zhang, L. Liu, X. Chen, Y. Gao, S. Xie, J. Mi, GLC_FCS30: Global land-cover product with
fine classification system at 30 m using time-series Landsat imagery. Earth Syst. Sci. Data
13,2753-2776 (2021).

L. Giglio, W. Schroeder, C. O. Justice, The collection 6 MODIS active fire detection
algorithm and fire products. Remote Sens. Environ. 178, 31-41 (2016).

R.Ramo, E. Roteta, |. Bistinas, D. van Wees, A. Bastarrika, E. Chuvieco, G. R. van der Werf,
African burned area and fire carbon emissions are strongly impacted by small fires
undetected by coarse resolution satellite data. Proc. Natl. Acad. Sci. U.S.A. 118,
2011160118 (2021).

N. Andela, D. C. Morton, L. Giglio, Y. Chen, G. R. van der Werf, P.S. Kasibhatla, R. S. DeFries,
G. J. Collatz, S. Hantson, S. Kloster, D. Bachelet, M. Forrest, G. Lasslop, F. Li, S. Mangeon,
J.R. Melton, C. Yue, J.T. Randerson, A human-driven decline in global burned area.
Science 356, 1356-1362 (2017).

A. Bento-Gongalves, A. Vieira, Wildfires in the wildland-urban interface: Key concepts and
evaluation methodologies. Sci. Total Environ. 707, 135592 (2020).

D. Caballero, I. Beltran, Concepts and ideas of assessing settlement fire vulnerability in
the W-Ul zone, in Proceedings of the International Workshop WARM, in Forest Fires in the
Wildland-Urban Interface and Rural Areas in Europe: An Integral Planning and Management
Challenge, G. Xanthopoulos, Ed. (2003), pp. 47-54.

J. M. C. Pereira, Defining and mapping the wildland-urban interface in Portugal, in
Advances in Forest Fire Research 2018, D. X. Viegas, Ed. (Imprensa da Universidade de
Coimbra, 2018), pp. 742-749; http://dx.doi.org/10.14195/978-989-26-16-506_81.

C. Lampin-Maillet, M. Jappiot, M. Long, C. Bouillon, D. Morge, J.-P. Ferrier, Mapping
wildland-urban interfaces at large scales integrating housing density and vegetation
aggregation for fire prevention in the South of France. J. Environ. Manage. 91, 732-741
(2010).

D. Kahle, H. Wickham, ggmap: Spatial visualization with ggplot2. RJ. 5, 144-161
(2013).

H. Hersbach, B. Bell, P. Berrisford, S. Hirahara, A. Horanyi, J. Mufioz-Sabater, J. Nicolas,

C. Peubey, R. Radu, D. Schepers, A. Simmons, C. Soci, S. Abdalla, X. Abellan, G. Balsamo,
P. Bechtold, G. Biavati, J. Bidlot, M. Bonavita, G. De Chiara, P. Dahlgren, D. Dee,

M. Diamantaksis, R. Dragani, J. Flemming, R. Forbes, M. Fuentes, A. Geer, L. Haimberger,
S. Healy, R. J. Hogan, E. H6Im, M. Janiskova, S. Keeley, P. Laloyaux, P. Lopez, C. Lupu,

G. Radnoti, P. de Rosnay, I. Rozum, F. Vamborg, S. Villaume, J.-N. Thépaut, The ERA5 global
reanalysis. Quart. J. Roy. Meteor. Soc. 146, 1999-2049 (2020).

CMES, Fire danger indices historical data from the Copernicus Emergency Management
Service, ECMWF (2019); https://doi.org/10.24381/CDS.0E89C522.

C.Vitolo, F. Di Giuseppe, C. Barnard, R. Coughlan, J. San-Miguel-Ayanz, G. Liberta,

B. Krzeminski, ERA5-based global meteorological wildfire danger maps. Sci. Data 7, 216
(2020).

K. Winkler, R. Fuchs, M. Rounsevell, M. Herold, Global land use changes are four times
greater than previously estimated. Nat. Commun. 12, 2501 (2021).

WorldPop, Center for International Earth Science Information Network (CIESIN), Columbia
University, Global high resolution population denominators project (2018); https://doi.
0rg/10.5258/SOTON/WP00647.

110f12

202 ‘0T JS0WeA0N U0 610°80Us 195" MAMM//SO1Y LWoJ) papeoumoq


https://www.fao.org/3/ag041e/ag041e.pdf
https://www.fao.org/3/ag041e/ag041e.pdf
http://dx.doi.org/10.2737/rds-2015-0012-3
http://dx.doi.org/10.14195/978-989-26-16-506_81
http://dx.doi.org/10.24381/CDS.0E89C522
http://dx.doi.org/10.5258/SOTON/WP00647
http://dx.doi.org/10.5258/SOTON/WP00647

SCIENCE ADVANCES | RESEARCH ARTICLE

71. G.R.van der Werf, J.T. Randerson, L. Giglio, T.T. van Leeuwen, Y. Chen, B. M. Rogers,

M. Mu, M. J. E. van Marle, D. C. Morton, G. J. Collatz, R. J. Yokelson, P. S. Kasibhatla, Global
fire emissions estimates during 1997-2016. Earth Syst. Sci. Data 9, 697-720 (2017).

72. J.T. Abatzoglou, A. P. Williams, Impact of anthropogenic climate change on wildfire
across western US forests. Proc. Natl. Acad. Sci. U.S.A. 113, 11770-11775 (2016).

73. K. Shi,Y.Touge, Characterization of global wildfire burned area spatiotemporal patterns
and underlying climatic causes. Sci. Rep. 12, 644 (2022).

74. T.V.Nguyen, K. J. Allen, N. C. Le, C. Q. Truong, K. Tenzin, P. J. Baker, Human-driven fire
regime change in the seasonal tropical forests of central Vietnam. Geophys. Res. Lett. 50,
€2022GL100687 (2023).

75. V.lglesias, J. K. Balch, W. R. Travis, U.S. fires became larger, more frequent, and more
widespread in the 2000s. Sci. Adv. 8, eabc0020 (2022).

76. W.J. de Groot, B. M. Wotton, M. D. Flannigan, Wildland fire danger rating and early
warning systems, in Wildfire Hazards, Risks and Disasters, J. F. Shroder, D. Paton, Eds.
(Elsevier, 2015), chap. 11, pp. 207-228; www.sciencedirect.com/science/article/pii/
B9780124104341000117.

77. Forest Service, Bureau of Indian Affairs, Bureau of Land Management, Fish and Wildlife
Service & National Park Service, Urban wildland interface communities within the vicinity
of federal lands that are at high risk from wildfire. (Forest Service, USDA, 2001).

Acknowledgments

Funding: This work was supported by Strategic Priority Research Program of the Chinese
Academy of Sciences (XDB0740100), the National Natural Science Foundation of China
(42222110), and the National Key Research and Development Program of China (no.
2022YFF1301101). The funders had no role in the conceptualization, design, data collection,
analysis, decision to publish, or preparation of the manuscript. Author contributions:

Guo etal., Sci. Adv. 10, eado9587 (2024) 8 November 2024

Conceptualization: J.W., Y.Gu., Y. Ge and C.Z. Methodology: Y.Gu., J.W., and C.Z. Data and
analysis: Y.Gu,, JW., Y. Ge,, and C.Z. Visualization: Y.Gu., J.W., Y. Ge, and C.Z. Supervision: Y.Gu.,
JW. Y. Ge, and C.Z. Writing—original draft: Y.Gu., JW., Y. Ge, and C.Z. Writing—review and
editing: Y.Gu,, JW. Y. Ge, and C.Z. Funding acquisition: J.W. Competing interests: The authors
declare that they have no competing interests. Data and materials availability: All data
needed to evaluate the conclusions in the paper are present in the paper and the
Supplementary Materials. The GlobeLand30 land cover datasets are publicly available at www.
webmap.cn/. The MODIS active fire datasets are available at https://firms.modaps.eosdis.nasa.
gov/download/. The HILDA+ vGLOB-1.0 land cover datasets are available at https://doi.
org/10.1594/PANGAEA.921846. The Fire Weather Index historical data are available at https://
ewds.climate.copernicus.eu/datasets/cems-fire-historical-v1?tab=overview. The daily
maximum temperature data are available at https://cds.climate.copernicus.eu/datasets/
derived-era5-pressure-levels-daily-statistics?tab=overview. The WorldPop population datasets
are publicly through WorldPop Open Population Repository at the following link: https://wopr.
worldpop.org/. The GFED regions are derived from GFED ancillary data, available at www.geo.
vu.nl/~gwerf/GFED/GFED4/. The WUI maps produced by United State Forest Service are
available at www.fs.usda.gov/rds/archive/catalog/RDS-2015-0012-3. The WUI map produced
by California Fire and Resource Assessment Program is available at frap.fire.ca.gov. The 30-m
WUI mapping results in 2000, 2010, and 2020 produced by this study are available in a public
data repository at https://zenodo.org/records/13745109. The code to draw figures is shared at
https://github.com/CASGIS/GlobalWUL.

Submitted 28 February 2024
Accepted 7 October 2024
Published 8 November 2024
10.1126/sciadv.ado9587

120f 12

202 ‘0T JS0WeA0N U0 610°80Us 195" MAMM//SO1Y LWoJ) papeoumoq


http://www.sciencedirect.com/science/article/pii/B9780124104341000117
http://www.sciencedirect.com/science/article/pii/B9780124104341000117
http://www.webmap.cn/
http://www.webmap.cn/
https://firms.modaps.eosdis.nasa.gov/download/
https://firms.modaps.eosdis.nasa.gov/download/
https://doi.org/10.1594/PANGAEA.921846
https://doi.org/10.1594/PANGAEA.921846
https://ewds.climate.copernicus.eu/datasets/cems-fire-historical-v1?tab=overview
https://ewds.climate.copernicus.eu/datasets/cems-fire-historical-v1?tab=overview
https://cds.climate.copernicus.eu/datasets/derived-era5-pressure-levels-daily-statistics?tab=overview
https://cds.climate.copernicus.eu/datasets/derived-era5-pressure-levels-daily-statistics?tab=overview
https://wopr.worldpop.org/
https://wopr.worldpop.org/
http://www.geo.vu.nl/~gwerf/GFED/GFED4/
http://www.geo.vu.nl/~gwerf/GFED/GFED4/
http://www.fs.usda.gov/rds/archive/catalog/RDS-2015-0012-3
http://frap.fire.ca.gov
https://zenodo.org/records/13745109
https://github.com/CASGIS/GlobalWUI

	Global expansion of wildland-urban interface intensifies human exposure to wildfire risk in the 21st century
	INTRODUCTION
	RESULTS
	Mapping the global WUI
	Temporal changes in the global WUI
	WUI trends directly impacted by urbanization and wildlands
	The patterns between fire activity and WUI

	DISCUSSION
	MATERIALS AND METHODS
	Experimental design
	Data sources
	Global land cover data
	Active wildfire product
	WUI identification and global mapping
	Quantifying the direct causes of WUI changes
	Assessing fire regimes nearby the WUI


	Supplementary Materials
	This PDF file includes:

	REFERENCES AND NOTES
	Acknowledgments

	Global expansion of wildland-urban interface intensifies human exposure to wildfire risk in the 21st century
	INTRODUCTION
	RESULTS
	Mapping the global WUI
	Temporal changes in the global WUI
	WUI trends directly impacted by urbanization and wildlands
	The patterns between fire activity and WUI

	DISCUSSION
	MATERIALS AND METHODS
	Experimental design
	Data sources
	Global land cover data
	Active wildfire product
	WUI identification and global mapping
	Quantifying the direct causes of WUI changes
	Assessing fire regimes nearby the WUI


	Supplementary Materials
	This PDF file includes:

	REFERENCES AND NOTES
	Acknowledgments


