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Abstract. We review science-based adaptation strategies for western North American
(WNA) forests that include restoring active fire regimes and fostering resilient structure and com-
position of forested landscapes. As part of the review, we address common questions associated
with climate adaptation and realignment treatments that run counter to a broad consensus in the
literature. These include the following: (1) Are the effects of fire exclusion overstated? If so, are
treatments unwarranted and even counterproductive? (2) Is forest thinning alone sufficient to
mitigate wildfire hazard? (3) Can forest thinning and prescribed burning solve the problem? (4)
Should active forest management, including forest thinning, be concentrated in the wildland
urban interface (WUI)? (5) Can wildfires on their own do the work of fuel treatments? (6) Is the
primary objective of fuel reduction treatments to assist in future firefighting response and con-
tainment? (7) Do fuel treatments work under extreme fire weather? (8) Is the scale of the problem
too great? Can we ever catch up? (9) Will planting more trees mitigate climate change in wNA
forests? And (10) is post-fire management needed or even ecologically justified? Based on our
review of the scientific evidence, a range of proactive management actions are justified and neces-
sary to keep pace with changing climatic and wildfire regimes and declining forest heterogeneity
after severe wildfires. Science-based adaptation options include the use of managed wildfire, pre-
scribed burning, and coupled mechanical thinning and prescribed burning as is consistent with
land management allocations and forest conditions. Although some current models of fire man-
agement in wNA are averse to short-term risks and uncertainties, the long-term environmental,
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social, and cultural consequences of wildfire management primarily grounded in fire suppression
are well documented, highlighting an urgency to invest in intentional forest management and

restoration of active fire regimes.

Key words:  adaptive management; carbon; climate change; Climate Change and Western Wildfires; cul-
tural burning; ecological resilience; forest management; fuel treatments; managed wildfire; mechanical thin-

ning; prescribed fire; restoration; wildland fire.

INTRODUCTION

Forested landscapes across much of western North
America (WNA) are significantly departed from histori-
cal structure, species composition, and wildland fire
regime characteristics (Hagmann et al. 2021), and as
such, their resilience and resistance to rapidly changing
wildfire and climatic regimes are compromised (Ste-
phens et al. 2020, Hessburg et al. 2021). Through a vari-
ety of causes, including curtailment of Indigenous
burning practices, livestock grazing, and modern fire
suppression, fire frequency in the 20th century decreased
in many wNA forests (Marlon et al. 2012, Hessburg
et al. 2019). The absence of fire and past forest manage-
ment have led to profound changes in ecosystem struc-
ture, composition, and processes over the last two
centuries (Hessburg et al. 2005, Parks et al. 20155,
Haugo et al. 2019). As the climate warms, forested land-
scapes face increasing vulnerability to rapid and exten-
sive ecosystem changes from severe, large-scale
disturbances such as persistent droughts, insect out-
breaks, disease epidemics, and high-severity fires (Allen
et al. 2010, Bentz et al. 2010, Crockett and Westerling
2017).

Historically, wildland fires, including human and
lightning ignitions, varied in size, intensity, duration,
and seasonality (Perry et al. 2011, Hessburg et al. 2016).
Patterns of burning and re-burning created mosaics of
severity, species distributions, and resource conditions
within shifting patchworks of forest and nonforest vege-
tation and fuels, thereby limiting the extent of stand-
replacing fire events (Prichard et al. 2017, Nigro and
Molinari 2019, Hagmann et al. 2021). In the context of
fire exclusion and climate change, many fire-prone for-
ests now exhibit high surface, ladder, and canopy fuel
contagion with lasting implications for ecosystem
changes, carbon storage, hydrologic regimes, native bio-
diversity, and terrestrial and aquatic habitats (Ager et al.
2007, Coop et al. 2020).

In recent decades, increased area burned by western
wildfires has been associated with uncharacteristically
large patches of high-severity, stand-replacing fire (Parks
and Abatzoglou 2020, Hagmann et al. 2021). In some
regions, such as the Sierra Nevada Range in California
and eastern Cascades of Washington state, area burned
by high-severity fire is 4-10 times that of historical fire
regimes (Mallek et al. 2013, Reilly et al. 2017). Because
high-severity fire events can be catalysts for vegetation
change, particularly when coupled with warmer and
drier climatic conditions, trends in large wildfires and
burn severity have implications for rapid ecosystem

shifts and declines in valued resources (Kemp et al.
2019, Stevens-Rumann and Morgan 2019, Coop et al.
2020).

There is growing awareness of the vulnerability of many
wNA forests and human communities to changing wild-
fire and climatic regimes (North et al. 2015, Hessburg
et al. 2016). Under the United States National Cohesive
Wildland Fire Management Strategy (United States
Department of Agriculture and United States Depart-
ment of Interior 2021), multi-entity, cross-jurisdictional
partnerships have formed to increase the pace and scale
of forest adaptation and restorative treatments to pro-
mote broad-based landscape resilience to fire, fire-
adapted communities, and safe and effective wildfire
responses. Similarly, recent large wildfires (>1.2 million ha
in both 2017 and 2018) in western Canada are prompting
re-examination of forest fire management practices and
the need to restore more fire-resilient landscapes (Parisien
et al. 2020, Tymstra et al. 2020). Northern Mexico and
Baja peninsula forests have experienced a much shorter
period of fire exclusion, but a growing fire deficit mirrors
trends in the United States and Canada (Rivera-Huerta
et al. 2016, Yocom Kent et al. 2017).

Over the past two decades, there has been confusion
in some of the scientific literature and popular media
surrounding changes in the nature and extent of forest
and fire regime changes (Hagmann et al. 2021), and the
need for and efficacy of adaptation or restorative treat-
ments. Since some treatments can involve the commer-
cial sale of timber, they can be viewed through the lens
of conflict over the role of timber production on federal,
tribal and private forestlands. The legacy of mistrust
from these conflicts affects how different groups perceive
the science and its application in support of proactive
efforts to increase the resilience of forested landscapes
(Schultz and Jedd 2012, Dubay et al. 2013). Perceived
uncertainty in the science of fuel treatments and adap-
tive forest management has the potential to hinder col-
laborative decision-making, weaken public support for
adaptive forest management, and slow implementation
of needed forest management, particularly where courts
rule that the science is yet unsettled. For example, in a
recent opinion on a proposed forest restoration project,
US State Court of Appeals for the Ninth Circuit Judge
Graber wrote, “The project’s proposed methodology of
variable density thinning is both highly controversial
and highly uncertain.” (BARK et al. v. U.S. Forest Ser-
vice. No. 3:18-cv-01645-MO). Given current warming
trends, changing wildfire regimes, and climate projec-
tions for the balance of this century, the current
slow pace and small scale of adaptive management
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portend that many forest landscapes will experience
uncharacteristic, high-severity wildfires and/or insect
outbreaks before treatments can occur (North et al.
2015h, McWethy et al. 2019). High-severity disturbance
events often have long-lasting impacts, including losses
to ecosystem services and valued resources, shifts to new
ecosystem types, and reduced options for future adapta-
tion (Stevens-Rumann and Morgan 2019).

Under climate change, land development, and the
spread of invasive species, adaptive forest management
is not intended to return systems to historical reference
conditions (Allen et al. 2011, Falk et al. 2019). Nonethe-
less, adaptive strategies prompt managers to define a set
of historical and future reference conditions that can be
used to discern the direction and magnitude of changes
from the current conditions and continuing trends to
develop metrics of success (e.g., see Keane et al. 2009,
Safford and Stevens 2017). An evidenced-based
approach built on data and the scientific method is the
most promising path to promote resilience in forests sub-
ject to future wildfires and climate change (Stephens
et al. 2016, 2020). Given the historical role of Indige-
nous land stewardship on many wNA landscapes, com-
bining western science and Indigenous knowledge
systems is foundational to intentionally restoring and
adapting western forest ecosystems (Kimmerer and Lake
2001, Lake et al. 2017, Roos et al. 2021).

Here, we provide a synthesis of science-based manage-
ment strategies that include restoring active fire regimes
and fostering resilient forest structure and composition.
Through a thorough review of the scientific literature,
we evaluate the relative effectiveness of forest manage-
ment strategies. We then address 10 common questions
about fuel treatments and forest adaptation to changing
climatic and wildfire regimes: (1) Are the effects of fire
exclusion overstated? If so, are treatments unwarranted
and even counterproductive? (2) Is forest thinning alone
sufficient to mitigate wildfire hazard? (3) Can forest
thinning and prescribed burning solve the problem? (4)
Should active forest management, including forest thin-
ning, be concentrated in the wildland urban interface
(WUID)? (5) Can wildfires on their own do the work of
fuel treatments? (6) Is the primary objective of fuel
reduction treatments to assist in future firefighting
response and containment? (7) Do fuel treatments work
under extreme fire weather? (8) Is the scale of the prob-
lem too great? Can we ever catch up? (9) Will planting
more trees mitigate climate change in wNA forests? and
(10) Is post-fire management needed or even ecologically
justified?

Fuel treatments and active forest management

Biophysical context and socio-cultural considerations.—
Much of the literature on adaptive forest management
and fuel treatments in wNA pertains to seasonally dry
pine and mixed-conifer forests, including ponderosa pine
(Pinus ponderosa), Jeffrey pine (P jeffreyi), interior
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Douglas-fir, and mixed-conifer forests of Douglas-fir
(Pseudotsuga menziesii), grand or white fir (Abies gran-
dis, A. concolor), and western larch (Larix occidentalis)
and is concentrated on the western United States. How-
ever, as reviewed by Hagmann et al. (in press), the effects
of fire exclusion are broad reaching and include depar-
tures in oak woodlands, mixed broadleaf-conifer forests,
and cold forests as well. As we address the topics of for-
est and fuel management, it is important to provide the
context, observation scale, and scope of inference of
existing studies to understand where and when active
management may be warranted.

Seasonally dry pine and mixed-conifer forests were
historically dominated by fire- and drought-tolerant
conifers with thick bark; fire-tolerant leaf, branch, and
crown morphology; and other adaptations to surviving
low- to moderate-intensity surface fires (Agee 1996,
Margolis and Malevich 2016, Stevens et al. 2020).
Repeated fires removed fuels and created highly varying
patterns of individual trees, small tree clumps, and vari-
able sized openings (Jeronimo et al. 2019, Kane et al.
2019). These fuel characteristics collectively contributed
to resistance to active crown fires (Ritter et al. 2020) but
allowed for individual tree and tree-group torching. Past
management and fire exclusion caused tree infilling in
many of these forests (Naficy et al. 2016, Hessburg et al.
2019), resulting in substantially denser forests with con-
tinuous layered canopies, homogeneous structure, higher
density of fire-intolerant species, and high surface fuel
loads and fuel ladders connecting surface to crown fuels
(Savage et al. 2013, Battaglia et al. 2018, van Mantgem
et al. 2018).

Many western oak woodlands and mixed hardwood-
pine forests were historically adapted to frequent fire
and actively maintained by Indigenous burning practices
(Lake et al. 2018). In the absence of frequent fire, oak
woodlands and hardwood-conifer forests have been
invaded by conifers and other vegetation (Engber et al.
2011, Hoffman et al. 2019). Due to the often extensive
fuel ladders and surface fuel loads of contemporary
mixed oak-conifer woodlands, reintroducing low-
severity fire in forests now dominated by conifers will
not likely restore oak woodlands to enable an active fire
regime (Barnhart et al. 1996). In some locations, inva-
sion of non-native grasses combined with frequent
human ignitions can lead to a decline in oak woodlands
and mixed hardwood-pine forests, favoring grassland
expansion, and precluding restoration of oak woodlands
(Lilley and Vellend 2009).

Moist mixed-conifer and broadleaf deciduous forests
(e.g., quaking aspen, black cottonwood, and balsam
poplar, Populus tremuloides, P. trichocarpa, and P. bal-
samifera) exist throughout wNA, and where they reside
in drier climatic settings, they occupy moist sites and
valley-bottom locations. These are environments where
dense forests with multi-layered canopies are more typi-
cal. Historically, moderate- and high-severity fires were
common in these topographic settings (Perry et al. 2011,
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Hessburg et al. 2019). However, where moist mixed for-
ests were interspersed between dry pine and mixed-
conifer forest along topographic and edaphic gradients,
low- and moderate-severity fires also commonly
occurred (Hagmann et al. 2014, Johnston et al. 2016,
Merschel et al. 2018, Ng et al. 2020). Historically, fre-
quent fire favored fire-tolerant tree species and open
canopy conditions that were well below carrying capac-
ity of many mixed-conifer forest sites (Hagmann et al.
2021). Indigenous burning also intentionally created
patches of meadows, prairies and seasonally dry wet-
lands in some moist conifer forests (Underwood et al.
2003, Storm and Shebitz 2006). With climate shifting to
warmer and drier conditions, managers may reduce the
vulnerability of these patches by employing variable den-
sity thinning and prescribed fire that favor the likelihood
of low- to moderate fire effects rather than high severity
by creating tree clumps, gaps, and openings within cur-
rently continuous forest canopies (Churchill et al. 2013,
Knapp et al. 2017). Where reducing the risk of large
patches of high-severity fire is the goal, many of the
same strategies used in dry mixed-conifer forests are
appropriate to moist mixed-conifer forests (LeFevre
et al. 2020). However, small patches of dense and older
forest can be embedded within the clumped and gapped
tree patterns, and large patches are especially appropri-
ate on north aspects and in valley bottoms (Perry et al.
2011, Hessburg et al. 2015).

Montane cold forests are dominated by thin-barked
species such as Engelmann spruce (Picea engelmanii),
subalpine fir (4. lasiocarpa), and lodgepole pine (P. con-
torta), and can include white and black spruce (P. glauca
and P. mariana) further north in the Canadian boreal
and subboreal zones (Rowe and Scotter 1973, Agee
1996, Morgan et al. 2008). Departures in these forests
are primarily manifested in a loss of burned and recover-
ing patchworks, loss of seral stage and patch size com-
plexity, and high crown fire potential over broad areas
(Hessburg et al. 2019, Fig. 1) rather than within-patch
changes in tree density and composition. Historical resi-
lience in these forests was largely driven by landscape
heterogeneity in the form of patchworks of nonforest
vegetation (shrublands, wet and dry meadows) and var-
ied successional and surface fuel conditions, which
reduced contagion of dense and layered forests (Stock-
dale et al. 2019). Indigenous fire stewardship in some
cold forests varied post-fire effects to stagger availability
of desired resources. The condition of the valued
resources (e.g., foods, forage for big game, medicines,
basketry materials), fuel loading, and fuel continuity
determined the frequency, seasonality, and locations of
intentionally burning, where lightning ignitions were too
few, or fire effects were insufficient to the maintenance
of resources (Lake and Christianson 2019).

Fuel treatments and how they contribute to forest adapta-
tion.—Stephens et al. (2010) recommend four strategies
for adapting western forest landscapes to changing
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climatic and wildfire regimes. They define resistance
work as that which mitigates expected wildfire effects
and protects valued resources, while realignment work
modifies existing conditions to restore key ecosystem
patterns and the processes they drive. Creating resilient
conditions improves the natural capacity of an ecosys-
tem to respond favorably when unplanned or unantici-
pated disturbances occur. Finally, they present response
work as any active facilitation to achieve culturally and
ecologically desirable results that are otherwise difficult
to achieve. Each of these strategies can play a role in
wNA forest management.

As wNA forest ecosystems respond to warmer and
drier summers and longer fire seasons, some areas that
once supported forests will shift to nonforest (Parks
et al. 2019, Coop et al. 2020), and historical fire regimes
that resulted from feedbacks between past climate and
vegetation may no longer be supported (McWethy et al.
2019). With rapid change and ecological surprises, novel
ecosystems and disturbance regimes will emerge, and
there is a high level of uncertainty in future ecological
outcomes. The combined strategies reviewed in Stephens
et al. (2010) can be used to prioritize where adaptive for-
est management may be the most advisable and effective
(Box 1). Furthermore, facilitating ecosystem shifts in
portions of the landscape can benefit resilience at land-
scape and regional scales. For example, certain vegeta-
tion types (e.g., shrub and grasslands) may be more
adapted to future climate conditions and can contribute
to landscape heterogeneity. They also may alter fire
behavior patterns towards a reduction in crown fire initi-
ation and spread

There are two main types of management actions to
modify forest fuels (termed fuel treatments), and they
include (1) reducing surface and canopy fuels via pre-
scribed burning, thinning or other mechanical treat-
ments followed by removal or on-site burning of woody
debris, or (2) rearranging fuels including thinning or
mechanical treatments without slash reduction. Each
type of treatment directs how and where potential energy
is stored and released at the scale of forest patches to
landscapes, and thresholds to burning.

Fuel reduction.—Common fuel reduction treatments
include a combination of (1) forest thinning to reduce
canopy bulk density and ladder fuels, and (2) prescribed
burning or biomass removal to reduce surface fuels,
including logging slash from the thinning event and
prior fuel accumulations (Reinhardt et al. 2008, Kalies
and Yocom Kent 2016). Prescribed burning of logging
slash generally includes piling and burning concentrated
logging slash and broadcast burning dispersed slash.
Forest management projects aimed at fuel reduction in
dry or moist mixed-conifer forests and pine, Douglas-fir,
or oak woodlands are designed to foster the develop-
ment of forest structure, composition, and configura-
tions that are more resilient to drought and
disturbances. These treatments also commonly reduce
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Fic. 1. (A) Dry mixed-conifer forests. Theorized responses of seasonally dry mixed-conifer forest biomass to wildfire and three
fire management scenarios under 21st-century climate change. (a) Partial wildfire suppression with only a small fraction of forested
landscape treated each year (*1%). In this scenario, escaped high-severity wildfires are the dominant change agent with a high prob-
ability of forest conversion to nonforest as represented in the ball and cup figure by a shallow forest basin of attraction and a deep
and broad nonforest basin of attraction. (b) A large percentage of the forested landscape (>50%) is treated either by frequent low
and moderate severity fires or fuel reduction treatments with ongoing maintenance. Large wildfires are infrequent, and fire severity
within the event perimeter is mostly low and moderate severity as represented in the ball and cup figure by a deep and wide forest
basin of attraction and a moderately deep and wide nonforest basin of attraction. (c) Aggressive wildfire suppression with no active
fuel reduction treatments; similar to scenario A but with even a higher likelihood of forest to nonforest conversion. (B) Cold forests.
Wildfire management scenarios represent two levels of wildland fire management under 21st-century climate change. (d) Cold forest
area treated with moderately frequent fires of moderate and high severity. Because large fire events are relatively rare, forest regener-
ation is supported by patchworks of remnant forest, represented by a deep and wide forest basin of attraction. (e) Aggressive fire
suppression with no active fuel treatments. In this scenario, escaped wildfires are the major change agent through large, mostly high
severity fires. Forest regeneration is limited by large, high severity fire events, and conversion to nonforest is common; represented
by a shallow and narrow forest basin of attraction and a deep and broad nonforest basin of attraction.

surface fuel loads to promote lower flame lengths, sur-
face fire intensity and spread, and a reduction in crown
fire potential (Agee and Skinner 2005). Forest thinning
in these forest types is aimed at retaining larger, more

fire-resilient tree species, and restoring open canopy
structure. For example, the individuals, clumps, and
openings (ICO) method selects trees and tree groups to
impart spatial heterogeneity to the forest by varying the
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Box 1. Defining restorative and adaptive management

Ecosystem restoration is actively assisting the recovery of an ecosystem that has been degraded, damaged,
or transformed (Holl 2020). Adaptive management is a learning-by-doing method of responding to ecosys-
tem changes, informed by effectiveness monitoring (Lyons et al. 2008, Larson et al. 2013b). Recent reviews
examine in detail research on adaptive and restorative forest fuel treatments, including mechanical thinning,
prescribed and Indigenous cultural burning, and management of unplanned ignitions, and their relative effec-
tiveness at mitigating future wildfire spread and severity (Fulé et al. 2012, Stephens et al. 2012, Martinson
and Omi 2013, Ryan et al 2013, Kalies and Yocom Kent 2016). Across seasonally dry forests, a promising
finding is that treatments involving prescribed or cultural burning or effectively managed wildfires generally
mitigate the spread and severity of subsequent wildfires for a period of time after treatment (5-20 yr, depend-
ing on site productivity, vegetation, and climate), and are often more effective than mechanical treatments
without follow-up prescribed burning (Prichard et al. 2017). Use of these management techniques can there-
fore improve forest resilience and resistance to change under a warmer, drier climate.

Treatments designed to restore or adapt fire-excluded forests to a changing climate must foster ecosystem
resilience and conserve native biodiversity. For example, restoration treatments are often designed to
enhance plant vigor, favor fire-adapted species, and create open forest structures, all with the objective of
increasing resilience and resistance to climatic warming and severe wildfires (Lehmkuhl et al. 2007, Rein-
hardt et al. 2008, North et al. 2012). An added benefit of most restorative treatments is that wildland fuel
hazard is also reduced (Fulé et al. 2001, Brown et al. 2004). Fire-less fuel reduction treatments rarely
mimic the broad role of fire (Reinhardt et al. 2008), which performs many cultural and ecological func-
tions, e.g., nutrient cycling, facilitating tree regeneration by exposing mineral soils, promoting valued cul-
tural and aesthetic resources (Marks-Block et al. 2019). As a result, any area treated using mechanical fuel
treatments alone rarely restores fire-adapted ecosystems.

distribution of forest and non-forest cover to achieve a
low edge to interior ratio with the goals of refostering
drought tolerance and reducing the probability of crown
fire (Larson and Churchill 2012, Churchill et al. 2017).
Recent evidence suggests that low-intensity fire alone
may not increase resilience because it is not sufficiently
lethal to shade-tolerant species that established during
an extended period of fire exclusion (e.g., Douglas-fir,
grand fir, white fir, incense-cedar [Calocedrus decurrens];
Cocking et al. 2014, Huffman et al. 2018, Eisenberg
et al. 2019). Methods such as ICO are intended to emu-
late the structural patterns maintained by frequent fires
and can be employed where single entry fires may not
achieve restoration goals.

Due to altered stand conditions, restoring an active
fire regime and reducing climate vulnerability often
requires either a managed wildfire that significantly thins
forests, consumes fuels, and favors fire-resistant, larger
trees (Holden et al. 2010, Kane et al. 2015), or coupled
mechanical thinning and prescribed or cultural burning
treatment followed by regular maintenance burning (Ste-
phens et al. 2012). Unplanned wildfires that consume
surface fuels can also be considered fuel reduction treat-
ments under moderate fire weather conditions (North
et al. 2012, Prichard et al. 2017). Mechanical treatments
that involve thinning and off-site biomass transport can
also be effective fuel reduction surrogates where infras-
tructure and economics allow (North et al. 2015a). In all
cases, fuel reduction treatments can be effective at miti-
gating subsequent wildfire behavior and effects for a per-
iod of time after treatment until surface and canopy

fuels accumulate through vegetation growth and deposi-
tion (Keane et al. 2015).

The key to effective fuel reduction is that it creates
gaps in surface and canopy fuel structures and reduces
the potential for contagious crown fire initiation and
spread (Reinhardt et al. 2008, Martinson and Omi 2013,
Fig. 2A). Depending upon the scale of a wildfire event
and the underlying climate and weather conditions, past
fuel reduction treatments can mitigate fire spread and
intensity at very fine to coarse spatial scales (Fulé et al.
2012, Prichard et al. 2017). For example, in a fire-
maintained pine forest or savanna, frequent understory
burning can maintain low loads of pine needle duff and
litter, fine wood and grass to support low-intensity sur-
face fires. In these forest types, the threshold for high-
severity fire is only crossed during extreme fire weather
and fire behavior, often involving plume-driven fire
spread from adjacent forests (Agee and Skinner 2005,
Lydersen et al. 2014).

Fuel rearrangement.— Without associated reduction of
surface fuels, mechanical thinning and mastication treat-
ments are examples of fuel rearrangement treatments
(Fig. 2B). Commercial or pre-commercial forest thin-
ning reduces the continuity of tree crowns, their bulk
density, and their propensity for spreading crown fire.
Consequently, thinning without prescribed burning is
considered both a reduction of canopy and ladder fuels
and a rearrangement of fuels from the canopy to the for-
est floor (Pollet and Omi 2002). Where canopy thinning
results in augmented surface fuels, fire behavior and
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Fic. 2. Representative photos of (A) fuel reduction treatment (maintenance surface fire in a previously thinned and burned for-
est); (B) fuel rearrangement (forest residues following mechanical thinning); and (C) fuel accumulation (fire excluded forest with
grand fir infilling around western larch trees). Photo credits: Roger Ottmar, Susan Prichard, and John Marshall.

severity can be amplified rather than diminished (Saf-
ford et al. 2009, Prichard et al. 2010). Furthermore,
many fire-excluded forests have elevated surface fuels
associated with more than a century of fire exclusion
(Knapp et al. 2013, Keane et al. 2015). Effective treat-
ment therefore necessitates prescribed burning that is
intense enough to reduce surface and ladder fuels such
that the likelihood of a subsequent intense fire is reduced
(Stephens et al. 2012). Wildfires that result in substantial
tree mortality may offer a short-term fuel reduction, but
over longer time periods (15-25 yr), downed wood accu-
mulations from snag and branch fall can elevate surface
fuels and create conditions for high-intensity reburn
events (Stevens-Rumann et al. 2012, Dunn and Bailey
2016, Johnson et al. 2020). As such, moderate to high-
severity wildfires are generally considered a type of
longer-term fuel rearrangement (Lydersen et al. 20194).

Development of landscape mosaics.— Intentional manage-
ment of landscapes involves the broad-scale planning and
spatial design of treatments, including determining where
they are most effective on the landscape and assessing
how individual treatments will interact with fire over
space and time (Ager et al. 2010, Falk et al. 2019). Many
historical landscapes, influenced by lightning and Indige-
nous ignitions, supported a hierarchical patchwork of for-
est and nonforest vegetation at coarse spatial scales in
addition to meso- and fine-grained heterogeneity of forest
age classes and vulnerability to fire (Hessburg et al. 2019,
Hagmann et al. 2021). Managed landscape mosaics can
be designed to restore more characteristic patchworks of
open and closed canopy vegetation of different patch
sizes, tree ages, and forest densities, and of fuel contagion
to facilitate restoring fire as a dynamic and beneficial eco-
logical process (Hessburg et al. 2015).

Fuel treatments that modify within-stand structure to
remove small trees and reduce surface fuels while retain-
ing large, more fire-resistant trees and variable stand
structure (Stephens et al. 2021) are most appropriate in
dry pine, dry to moist mixed-conifer forests and oak
woodlands, particularly where there is evidence that

older fire-resistant species have been or are being
replaced by younger fire-sensitive species (e.g., Yocom-
Kent et al. 2015). This mirrors the fine- to meso-scale
(i.e., 1-10,000 ha) heterogeneity in forest structure that
characterized these frequent-fire forest types historically
(Hessburg et al. 2019, Hagmann et al. 2021). In cold
forests characterized by greater landscape-scale hetero-
geneity, fuel treatments including managing unplanned
wildfires may be more appropriate at larger scales, par-
ticularly where landscape-scale heterogeneity has been
lost (Hessburg et al. 2019, Hagmann et al. 2021).

Within this context, reserves and other no-treatment
areas can be designated where fuels are left to accumulate
over time (Fig. 2C). Competing resource management
objectives and consideration of values at risk often inevi-
tably lead to management areas where fuel reduction
treatments are not allowed and wildfires are actively sup-
pressed. Examples include late-successional reserves,
riparian reserves, and other locations where wildland fires
and fuel reduction treatments are restricted to facilitate
habitat development. Over time, surface and canopy fuel
accumulations and wildfire dynamics will threaten the
objectives of these reserved areas (Van de Water and
North 2011, Reilly et al. 2018). Stationary reserves will be
difficult to maintain in areas where wildfires are the dis-
turbance engine that drives the ecosystem.

TeN CoMMON QUESTIONS ABOUT ADAPTIVE FOREST MAN-
AGEMENT

Although the need to increase the pace and scale of
fuel treatments is broadly discussed in scientific and pol-
icy arenas (Franklin and Johnson 2012, North et al.
2012, Kolden 2019), there is still confusion and disagree-
ment about the appropriateness of forest and fuel treat-
ments. For example, recent publications have questioned
whether large, high-severity fires are outside of the his-
torical range of variability for seasonally dry forests, and
whether the risk of high-severity fire warrants large-scale
treatment of fire-prone forests (Bradley et al. 2016, Del-
laSala et al. 2017). Others have questioned whether
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intentional management, including forest thinning, is
effective or justified outside of the wildland urban
interface (Moritz et al. 2014, Schoennagel et al. 2017).
Furthermore, debates around the management of fire-
adapted forests are occurring within the context of long
running conflicts over timber production on public
lands, especially federal lands, leading to questions
about science-based benefits of management treatments
where they align with economic incentives (Daniels and
Walker 1995). Currently, management strategies employ-
ing active fire suppression and limited use of fuel reduc-
tion treatments are common for most public land
management agencies.

Among the many challenges to proactive management
on public lands (e.g., funding, adequate and qualified
personnel, smoke impacts, and weather and fuel condi-
tions that fall within burn prescription parameters),
uncertainty in the scientific literature about forest man-
agement and fuel treatments is commonly cited in plan-
ning process-public comment periods (Spies et al. 2018,
Miller et al. 2020). In the following sections, we examine
10 common questions about forest management and fuel
treatments. We summarize them in Table 1 and provide
key citations that examine these questions. For each
topic, we evaluate the strength of evidence in the existing
scientific literature concerning each topic. Our goal is to
help managers, policy makers, informed public stake-
holders, and others working in this arena to establish a
robust scientific framework that will lead to more effec-
tive discussions and decision-making processes, and bet-
ter outcomes on the ground. Additional citations for
each question are listed in Appendix S1.

Are the effects of fire exclusion overstated? If so, are
treatments unwarranted and even counterproductive?

Concerns about forest thinning and other forms of
active management are sometimes based on the assump-
tion that contemporary conditions and fire regimes in
dry pine and mixed-conifer forests are not substantially
departed from those maintained by uninterrupted fire
regimes (Hagmann et al. 2021). This perspective does
not accurately reflect the breadth and depth of scientific
evidence documenting the influence of over a century of
fire exclusion. Support for the suggestion that ecological
departures associated with fire exclusion are overesti-
mated has repeatedly failed independent validation by
multiple research groups (Hagmann et al. 2021). In
addition, these arguments fail to consider widespread
Indigenous fire uses that affected landscape scale vegeta-
tion conditions linked to valued cultural resources and
services, food security, and vulnerability to wildfires
(Lake et al. 2018, Power et al. 2018). As is explored in
the following sections, a number of forest management
and treatment strategies are shown to be highly effective.
Site conditions and history are always important consid-
erations. Moreover, there is no one-treatment-fits-all
approach to forest adaptation.

SUSAN J. PRICHARD ET AL.

Ecological Applications
Vol. 31, No. 8

Evidence from a broad range of disciplines documents
widespread, multi-regional 20" -century fire exclusion in
interior forested landscapes of wNA (see a detailed refer-
ence list and discussion in Hagmann et al. 2021). Collec-
tively, these studies reveal extensive changes in tree
density, species and age composition, forest structure,
and continuity of canopy and surface fuels. Forests that
were once characterized by shifting patchworks of forest
and nonforest vegetation (i.e., grasslands, woodlands,
and shrublands) in the early 20th-century gradually
became more continuously covered in forest and densely
stocked with fuels (Fig. 4).

However, for over two decades, a small fraction of
the scientific literature has cast doubt on the inferences
made from fire-scar based reconstructions and broader
landscape-level assessments to suggest that estimates of
low- to moderate-severity fire regimes from these stud-
ies are overstated. Hagmann et al. (in press) examine
this counter-evidence in detail and identify critical
flaws in reasoning and methodologies in original
papers and subsequent re-application of these methods
in numerous geographic areas. Subsequent research
shows that studies relying on Williams and Baker
(2011) methods for estimating historical tree densities
and fire regimes overestimate tree densities and fire
severity (see also Levine et al. 2017). Moreover, estab-
lished tree-ring fire-scar methods more accurately
reconstruct known fire occurrence and extent. Other
studies, also based on the methods of Williams and
Baker (2011), conflate reconstructed low-severity, high-
frequency fire regimes with landscape homogeneity.
These interpretations disregard critical ecosystem func-
tions that were historically associated with uneven-
aged forests embedded in multi-level fine-, meso- and
broad-scale landscapes. By extension, claims that low-
severity fire regimes are overestimated then imply that
large, high-severity fires were a regular occurrence
prior to the era of European colonization. Such inter-
pretations may lead to the conclusion that recent
increases in high-severity fire are still within the histor-
ical range of variability, and that there is no need of
restorative or adaptive treatments (Hanson and Odion
2014, Odion et al. 2014, Baker and Hanson 2017).

Indeed, research from across wNA has shown that
high-severity fire was a component of historical fire
regimes, and that fires of all severities are currently in
deficit (Parks et al. 2015b, Reilly et al. 2017, Haugo
et al. 2019, but see Mallek et al. 2013). However,
reanalysis of the methods of Baker and others shows
that their methods inherently overestimate fire severity
and the frequency and area affected by high-severity
fire (Fulé et al. 2014, Hagmann et al. 2021). In addi-
tion, high-severity patches in recent fires are less
heterogeneous and more extensive than the historical
range of variability for forests characterized by low-
and moderate-severity fire regimes (Stevens et al.
2017, Hagmann et al. 2021). Finally, research across
wNA reveals key climate-vegetation-wildfire linkages,
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Question

Summary of evidence

Key citations

(1) Are the effects of fire
exclusion overstated? If
S0, are treatments
unwarranted and even
counterproductive?

(2) Is forest thinning alone
sufficient to mitigate
wildfire hazard?

(3) Can forest thinning
and prescribed burning
solve the problem?

(4) Should active forest
management, including
forest thinning, be
concentrated in the
wildland urban
interface (WUI)?

(5) Can wildfires on their
own do the work of fuel
treatments?

(6) Is the primary
objective of fuel
reduction treatments to
assist in future
firefighting response
and containment?

(7) Do fuel treatments
work under extreme fire
weather?

(8) Is the scale of the
problem too great? Can
we ever catch up?

(9) Will planting more
trees mitigate climate
change in wNA forests?

(10) Is post-fire
management needed or
even ecologically
justified?

Broad-scale evidence of fire exclusion is strong across disciplines
and western forest ecosystems. Although high severity fire was a
component of many historical fire regimes, the frequency and
extent of high severity fire over the past few decades is outside
the range of historical range of variability

Thinning alone can sometimes mitigate fire severity, but through
residual logging slash, desiccation of understory fuels, and
increased surface wind flow without accompanying surface fuel
reduction, thinning can contribute to high-intensity surface fires
and abundant mortality

Although thinning and prescribed burning have been shown to be
highly effective, not all forests are appropriate for this treatment
(e.g., thin-barked species common in cold mixed-conifer forests).
This type of fuel treatment is also not appropriate for wilderness
and other roadless areas

The majority of designated WUTI is in private ownership and hence
these lands are sometimes more difficult to treat than public
lands. Treating dry and moist mixed-conifer forests beyond WUI
buffers can modify fire behavior and change the intensity of
wildfires arriving at communities

Unplanned fires that escape suppression often burn under extreme
fire weather and can have severe wildfire effects. In contrast,
prescribed burns and managed wildfires generally burn under
more moderate weather conditions and contribute to variable
fire effects and surface fuel reduction that can mitigate future
wildfire severity

Although fuel reduction treatments can assist in suppression
operations, primarily using fuel treatments to suppress future
wildfires actually contributes to wildland fire deficit. Adaptive
treatments in fire-adapted landscapes aim to restore the patch to
landscape role of fire as an ecological process, reduce fire effects
and need for aggressive suppression when the fire next occurs

Fire behavior associated with persistent drought, high winds and
column-driven spread are associated with higher burn severity in
western North American forests. However, strong scientific
evidence across dry and moist mixed conifer forests
demonstrates effectiveness at mitigating burn severity, often even
under extreme fire weather conditions

The current pace and scale of treatments is decidedly inadequate to
restore fire-resilient and climate adapted landscapes. However,
evidence strongly supports that expanded use of fuel reduction
treatments can be effective

Temperate rainforests and other wet forests have the capacity to
store and sequester high amounts of forest carbon. However,
planting to increase tree density and continuity in fire-prone
forests is unsustainable due to high fire danger, anticipated
climatic water deficits and drought stress

Active forest and fuels management may be required beyond the
initial fire response in order to promote future forest resilience to
disturbance and climate change. Due to fire exclusion,
uncharacteristically dense patches of dead trees may contribute
to high-severity reburns as they fall and create heavy surface fuel
accumulations

Hessburg et al. (2005),
Reynolds et al. (2013), Stine
et al. (2014), Safford and
Stevens (2017), Stephens
et al. (2020), Hagmann et al.
(2021)

Stephens et al. (2009), Fulé
et al. (2012), Martinson and
Omi (2013), Kalies and
Yocom Kent (2016)

DellaSala et al. (2004),
Battaglia and Shepperd
(2007), Reinhardt et al.
(2008)

Kolden and Brown (2010),
Bladon (2018), Hallema
et al. (2018), Kolden and
Henson (2019), Schultz et al.
(2019)

Miller and Safford (2012),
Parks et al. (2015a, 2016),
Prichard et al. (2017),
Stevens et al. (2017), Kane
et al. (2019), Huffman et al.
(2020), Rodman et al. (2020)

Reinhardt et al. (2008), Safford
et al. (2012), Stephens et al.
(2020)

Arkle et al. (2012), Yocom-
Kent et al. (2015), Povak
et al. (2020), Prichard et al.
(2020)

Collins et al. (2009), North
et al. (2012), Parks et al.
(20154, 2016), Ager et al.
(2016), Barros et al. (2018),
Liang et al. (2018)

Thompson et al. (2007),
Veldman et al. (2019), Holl
and Brancalion (2020)

Peterson et al. (2015), Lydersen
et al. (2019a), North et al.
(2019)

Note: Western North America is abbreviated wNA.

where fire frequency, extent, and severity all increase
with increasing climatic warming, suggesting that
observed trends in fire patterns are commensurate

zoglou 2020).

with predicted relationships with ongoing climate
change (McKenzie and Littell 2017, Parks and Abat-
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Another perspective on this debate contends that
whether historical records can be agreed upon is of ancil-
lary importance. Adaptive forest management and fuel
reduction treatments are primarily aimed at increasing
forest resilience and/or resistance to climate change, fire
and other disturbances, which has positive societal and
ecological impacts that do not require justification based
on historical conditions, particularly given the no-analog
present and future that climate change presents (Freeman
et al. 2017). For example, the most concerning contempo-
rary high-severity fire events are associated with large
patches of complete stand replacement (Miller and
Quayle 2015, Lydersen et al. 2016). In some cases, high-
severity fire events convert forests to shrubland and grass-
land assemblages as alternative stable states in uncharac-
teristically large patches (Falk et al. 2019, Kemp et al.
2019, Stevens-Rumann and Morgan 2019). As such, a
critical forest management concern is that high-severity
wildfires are accelerating rates of vegetation change, forest
conversion, and vulnerability of native habitats in
response to a warming climate.

Is forest thinning alone sufficient to mitigate wildfire
hazard?

While “thin the forest to reduce wildfire threat” is
commonly cited in the popular media, the capacity for
thinning alone to mitigate wildfire hazard and severity is
not well supported in the scientific literature. Thinning
treatments require strategic selection of trees to target
fuel ladders and fire-susceptible trees, along with a sub-
sequent fuel reduction treatment (Jain et al. 2020).
When thinning is conducted without accompanied sur-
face fuel reduction, short and long-term goals may not
be realized.

Thinning from below reduces ladder fuels and canopy
bulk density concurrently, which can reduce the poten-
tial for both passive and active crown fire behavior (Agee
and Skinner 2005). For instance, Harrod et al. (2009)
found that thinning treatments that reduced tree density
and canopy bulk density and increased canopy base
height significantly reduced stand susceptibility to crown
fire compared to untreated controls. Furthermore, large-
diameter trees and snags that provide essential wildlife
habitat and other ecosystem values can be retained and
fuels can be deliberately removed around these struc-
tures using this approach (Lehmkuhl et al. 2015). Where
wood from treatments can be marketed, revenues from
thinning help to sustain broader management goals on
public lands. For example, some landscape restoration
collaboratives seek to reinvest profits from commercially
viable thinning to off-set costs associated with more
labor-intensive manual thinning and prescribed or cul-
tural burning needs (Schultz and Jedd 2012).

Some studies show that thinning alone can mitigate
wildfire severity (e.g., Pollet and Omi 2002, Prichard and
Kennedy 2014, Prichard et al. 2020), but across a wide
range of sites, thin and prescribed burn treatments are

SUSAN J. PRICHARD ET AL.

Ecological Applications
Vol. 31, No. 8

most effective at reducing fire severity (see reviews by
Fulé et al. 2012, Martinson and Omi 2013, Kalies and
Yocom Kent 2016). On most sites, thinning alone
achieves a reduction of canopy fuels but contributes to
higher surface fuel loads. If burned in a wildfire, these
fuels can contribute to high-intensity surface fires and
elevated levels of associated tree mortality (e.g., Stephens
et al. 2009, Prichard and Kennedy 2012). When trees are
felled and limbed, fine fuels from tree tops and branches
(termed activity fuels) are re-distributed over the treat-
ment area, thereby increasing surface fuel loads (Martin-
son and Omi 2013). Mechanical fuel reduction
treatments of these activity fuels are possible, but in
many locations, biomass removal and utilization (e.g.,
for bioenergy) after thinning treatments can be cost-
prohibitive due to long hauling distances and the eco-
nomic and technological challenges of building new bio-
mass facilities (Hartsough et al. 2008). Mastication
equipment is sometimes used to shred understory trees
and shrubs into smaller woody fragments, which are
then redistributed and left on site (Kane et al. 2009).
However, following mastication, surface fuels are tem-
porarily elevated, and masticated stands that burn in
wildland fires can cause deep soil heating from long-
duration smoldering combustion and elevated fire inten-
sities (Kreye et al. 2014).

Other unintended consequences of thinning without con-
comitant reduction in surface fuels can occur. For instance,
decreasing canopy bulk density can change site climatic
conditions (Agee and Skinner 2005). Wildfire ignition
potential is largely driven by fuel moisture, which can
decrease on drier sites when canopy bulk density is reduced
through commercial thinning (e.g., Reinhardt et al. 2006).
Reduced canopy bulk density can lead to increased surface
wind speed and fuel heating, which allows for increased
rates of fire spread in thinned forests (Pimont et al. 2009,
Parsons et al. 2018). Other studies show no effect of thin-
ning on surface fuel moisture (Bigelow and North 2012,
Estes et al. 2012), suggesting that thinning effects on sur-
face winds and fuel moisture are complex, site specific, and
likely vary across ecoregions and seasons.

In summary, although the efficacy of thinning alone as a
fuel reduction treatment is questionable and site depen-
dent, there exists widespread agreement that combined
effects of thinning plus prescribed burning consistently
reduces the potential for severe wildfire across a broad
range of forest types and conditions (Fig. 3; Fulé et al.
2012, Kalies and Yocom Kent 2016, Stephens et al. 2021).
Given this broad consensus in the scientific literature, some
authors suggest that forest thinning should be considered
in the context of wildfire hazard abatement, ecological
restoration and adaptation, and revitalization of cultural
burning (Lehmkuhl et al. 2007, Hessburg et al. 2015,
Huffman et al. 2020). Where restoring resilient forest com-
position and structure and reducing future wildfire hazard
are goals of management (Koontz et al. 2020), combined
thinning and burning approaches will provide ecological
and wildfire-risk reduction benefits (Knapp et al. 2017).
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Fic. 3. Active forest restoration treatment, Sinlahekin Wildlife Refuge, Washington Department of Fish and Wildlife. Top left:
multi-layered, dense dry mixed conifer forest after 100 yr of fire exclusion. Top right: residual forest after a variable density thinning
treatment. Bottom right: treated condition after pile and broadcast burning. Bottom left: post-wildfire photo after the 2015 Lime

Belt fire. Photo credit: John Marshall.

Can forest thinning and prescribed burning solve the
problem?

Fire has been a tool that has been actively used for
millennia. Indigenous burning practices maintained
prairies, oak and pine savannas, riparian areas, mixed-
conifer, hardwood, and dry forests, and high mountain
huckleberry and beargrass assemblages for food, medi-
cine, basketry and other resources (Trauernicht et al.
2015, Roos et al. 2021). Following prolonged fire exclu-
sion, many seasonally dry forest landscapes that were
once frequently burned now are densely stocked with
multi-layered canopies that often require thinning prior
to restoring fire (North et al. 2012, Ryan et al. 2013).
Prescribed burning on its own and in combination with
mechanical thinning are essential fuel reduction treat-
ments with demonstrated effectiveness in reducing fire
severity, crown and bole scorch, and tree mortality com-
pared to untreated forests (Safford et al., 2012a,b, Kalies
and Yocom Kent 2016). Thinning and burning in part-
nership with local Indigenous knowledge and practice
can support culturally valued practices, traditions, liveli-
hoods, and food and medicine security (Sowerwine et al.
2019).

Although the use of prescribed burning, often in com-
bination with mechanical thinning, has been shown to

be highly effective at mitigating wildfire severity and
increasing forest resilience to drought, insects and dis-
ease (Hood et al. 2015), these treatments alone cannot
address forest management challenges across wNA. Fuel
reduction treatments are not appropriate for all condi-
tions or forest types (DellaSala et al. 2004, Reinhardt
et al. 2008, Naficy et al. 2016). In some mesic forests,
for instance, mechanical treatments may increase the risk
of fire by increasing sunlight exposure to the forest floor,
drying surface fuels, promoting understory growth, and
increasing wind speeds that leave residual trees vulnera-
ble to wind throw (Zald and Dunn 2018, Hanan et al.
2020). Furthermore, prescribed surface fire is difficult to
implement in many current mesic forests since fire read-
ily spreads into tree crowns via abundant fuel ladders
and can result in crown fires. In other forest types such
as subalpine, subboreal, and boreal forests, low crown
base heights, thin bark, and heavy duff and litter loads
make trees vulnerable to fire at any intensity (Agee 1996,
Stevens et al. 2020). Fire regimes in these forests, along
with lodgepole pine, are dominated by moderate- and
high-severity fires, and applications of forest thinning
and prescribed underburning are generally inappropri-
ate. However, landscape burning and maintenance of
high elevation forests and meadows is part of cultural
burning, and high-intensity crown fire is used
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TasLe 2. Examples of wildfire management of unplanned ignitions and the influence of past wildfires in national parks and

wilderness areas.

Area Management objective Study findings Biophysical setting Reference

North Rim Grand Restoring fire; created Fires have thinning effect on  dry ponderosa pine Fulé and Laughlin
Canyon National strategic fuel small diameter trees forest and (2007), Stoddard
Park, AZ reductions to allow along with fine fuel and shrublands; cold et al. (2020)

Saguaro Wilderness,
AZ

Hualapai tribal
lands, AZ

Gila/Aldo Leopold
Wilderness, NM

Zion National Park,
UT

Yosemite National
Park (YNP), CA

Sequoia and Kings
Canyon National
Parks, Giant
Sequoia National
Monuments, CA

Frank Church —
River of No
Return
Wilderness, ID

Bob Marshall
Wilderness Area,
MT

Selway-Bitterroot
Wilderness
Complex, ID and
MT

for natural fire to
return

Sky islands; 30 yr of
repeated wildland
fires

Compared fire scars
with modern use of
low-intensity
prescribed burning

Restore fire as natural
process
Surface loads and
continuity drive high
fire frequency on
productive sites

Science-based fire
management plan
including managed
wildfires, prescribed
burning, and
hazardous fuel
reduction

Restore fire as natural
process; began with
fires within the park
interior and gradually
worked outward to
allow for more fires
throughout park

Restore fire as natural
process

Restore fire as natural
process

Restore fire as natural
process

Restore fire as natural
process; moisture
content of large fuels
and tree crowns drive
fire frequency (higher
on drier sites)

coarse wood
consumption

Repeat fires have reduced
small density trees but
medium trees are still
denser than historical
stand structures probably
supported

Prescribed fires since the
1960s approximate the
frequent surface fires of
historical record but
could incorporate greater
variability in temporal
schedules of burning

Low severity fires beget low
severity fires, and high
severity fires tend to
reburn at high severity in
flammable shrub fields.
Previous fires reduce size
of subsequent fires for a
short period of time

Repeat prescribed fires
reduce probability of
crown fire and increased
grass and forb cover, but
not tree density or shrub
cover

High severity burns favor
flammable shrub fields,
which perpetuate high
severity reburns. Low
severity burns perpetuate
low severity burns

In red fir forests, repeated
low- to moderate-severity
fire can restore structural
heterogeneity

Burn severity is lower
within recent fire areas
and increases with time
since fire. Previous fires
reduce size of subsequent
fires

Previous fires reduce size of
subsequent fires

Previous fires reduce size of
subsequent fires

dry mixed conifer
forests

dry ponderosa pine
forest and
shrublands

Dry ponderosa pine
forests

dry ponderosa pine
forest and
shrublands; dry
mixed conifer
forest; some cold
forest

dry ponderosa pine
forest and
shrublands

dry mixed conifer
forests and cold
forests

cold mixed conifer
forests, Rocky
Mountains

cold mixed conifer
and subalpine
forests

Holden et al. (2007),
Hunter et al. (2014)

Stan et al. (2014)

Rollins et al. (2002),
Holden et al. (2007,
2010), Hunter et al.
(2014), Parks et al.
(2014, 20154, 2016,
2018), Holsinger et al.
(2016)

Brown et al. (2019)

Boisramé et al. (2017),
Collins et al. (2009),
Coppoletta et al.
(2016), Scholl and
Taylor (2010), Thode
et al. (2011), van
Wagtendonk et al.
(2012)

Meyer et al. (2015)

Teske et al. (2012),
Parks et al. (2014,
20154, 2016, 2018),
Holsinger et al.
(2016)

Belote et al. (2015),
Holsinger et al.
(2016), Keane et al.
(2006), Larson et al.
(2013a), Parks et al.
(20154, 2016, 2018),
Teske et al. (2012)

Rollins et al. (2002),
Parks et al. (2015a),
2016, 2018), Barnett
et al. (2016a),
Holsinger et al.
(2016), Morgan et al.
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Area

Management objective

Study findings

Biophysical setting

Reference

Banff, Kootenay and  Guard fires to allow for

Yoho National
Parks (NP), BC &
Alberta, Canada

Wood Buffalo
National Park,
AB and NWT,
Canada

more natural ignitions
to burn within park;
restoration of aspen
and grasslands (bison
habitat)

Restore and maintain

fire as natural process

Multiple prescribed burns
to reduce dense lodgepole

pine (LPP) and allow
aspen to regenerate

Fire severity is influenced

by pre-fire stand
structure and
composition,

topoedaphic context, and

fire weather at time of
burning. Burned areas

less likely to burn again

for 33 yr, though this
decreases in drought

cold mixed conifer
and subboreal
forests, Rocky
Mountains

vegetation is
representative of
the western
Canadian boreal
forest

(2017), Teske et al.
(2012)

White (1985), Park et al.

(2019)

Parks et al. (2018),
Thompson et al.
(2017), Whitman
et al. (2019)

years

Note: State and province abbreviations are AZ, Arizona; NM, New Mexico; ID, Idaho; MT, Montana; BC, British Columbia;

AB, Alberta; NWT, North West Territory.

operationally on national forests and parks within the
United States and Canada for landscape restoration
objectives (Table 2).

Even where socially and ecologically appropriate, thin-
ning and low-intensity prescribed burning generally
require repeated treatments to meet fuel reduction objec-
tives. For example, without prior thinning, low-intensity
prescribed fire, on its own, may not consume enough
fuel or cause enough tree mortality to change forest
structure and reduce crown fire hazard (e.g., Lydersen
et al. 2019b). In contrast, prescribed burns in heavy
slash may result in high tree mortality. The first harvest
entry into fire-excluded stands often leaves high surface
fuel loads and dense understories that require one or
more prescribed burning treatments to reduce surface
and ladder fuels (Goodwin et al. 2018, Korb et al.
2020). Thus, it often takes multiple treatments and/or
fire entries, as well as ongoing maintenance, to realize
resilience and adaptation goals (Agee and Skinner 2005,
Stevens et al. 2014, Goodwin et al. 2020). Given the
extent and variability of forest ecosystems that have
experienced prolonged fire exclusion, active forest man-
agement can be only one tool to increase adaptation to
climate and future fires.

Although thinning and prescribed burning have been
shown to be highly effective, the current scale and pace
of these treatments do not match the scale of the man-
agement challenge (Barnett et al. 2016b, Kolden 2019).
Mechanical treatments are constrained by land manage-
ment allocations and their enabling legislation (e.g.,
wilderness and roadless areas), operational constraints
(e.g., steep slopes, distance to roads, costs), and adminis-
trative boundaries (e.g., riparian areas, areas managed
for species of concern). In the central Sierra Nevada for
example, these constraints, combined with large areas of

non-productive timberland that are unsuitable for com-
mercial treatment due to steep slopes or distance from
roads, left only 28% of the landscape available for
mechanical thinning and prescribed burning treatments
(North et al. 2015a). In the remaining area, prescribed
burning alone and/or use of managed wildfires may be
suitable replacement treatments (Boisramé et al. 2017,
Barros et al. 2018). However, prescribed fire-only treat-
ments are frequently limited by cost, liability, air quality
regulations, equipment availability, personnel capacity
and training, and the need for ongoing maintenance
treatments (Quinn-Davidson and Varner 2012, Schultz
et al. 2019).

In light of these constraints, some researchers and
managers have called for the expanded use of landscape-
scale prescribed burns and managed wildfires in addition
to fuel reduction treatments as a promising approach to
expand the pace and scale of adaptive management
(Question 5). Increasingly collaborative restoration part-
nerships with Indigenous cultures can increase opportu-
nities for re-instating tribal stewardship practices (Lake
et al. 2018, Long and Lake 2018). Under appropriate
weather and safety conditions, and where infrastructure
is not at risk, managed wildfire may serve as a useful
and cost-effective tool for reintroducing wildfire to fire-
excluded forests and achieve broad-scale management
goals.

Should active forest management, including forest
thinning, be concentrated in the wildland urban interface
(Wul)?

A question often asked by land managers is where to
locate fuel treatments to maximize their advantage while
minimizing adverse impacts. The 2000 National Fire Plan
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(USDA and USDI 2001) and the 2002 Healthy Forests
Initiative identified the need to reduce wildfire risk to
people, communities, and natural resources. The 2003
Healthy Forests Restoration Act (HFRA, Congress.gov,
2020) then specified that >50% of fuel reduction funding
be spent on projects within the Wildland Urban Interface
(WUI), and it reduced environmental review within
2.41 km (1.5 miles) of at-risk communities. The signifi-
cant increase in homes lost and suppression dollars spent
in the WUI in subsequent years (Mell et al. 2010) has cat-
alyzed extensive research on the WUI environment and
population expansion into wildlands (Radeloff et al.
2018). Subsequent studies demonstrating fuel treatment
effectiveness in the WUI (Safford et al. 2009, Kennedy
and Johnson 2014) and spatial methods for optimizing
WUI fuel treatments (Bar Massada et al. 2011, Syphard
et al. 2012) could be taken to suggest that most fuel
reduction should be implemented in the WUI to protect
homes and lives.

However, prioritizing the WUI-only for fuel reduction
treatments is often too narrow in scope to address
broader landscape-scale objectives. For example,
Schoennagel et al. (2009) found that more than two-
thirds of the area within a 2.5 km radius of at-risk
communities was privately owned and unavailable for
federally funded fuel treatments. This finding partly
elucidates why most hazard reduction fuel treatments
are implemented outside of HFRA designation. Fuel
treatments on federal lands near communities may also
be significantly more difficult, expensive, and risky to
implement, while air quality regulations and associated
risks create disincentives to treating near homes. Alter-
natively, agencies may be able to meet both annual pre-
scribed burning accomplishment targets and ecological
objectives in areas more distant from the WUI with
fewer risks, less money, and fewer personnel (Kolden
and Brown 2010, Schultz et al. 2019). Further, there is
increasing evidence that treating fuels across larger spa-
tial extents in strategically planned wildland locations,
rather than immediately adjacent to WUI, can indirectly
reduce risk to communities (Smith et al. 2016, Bowman
et al. 2020). Benefits of this strategy include increased
initial attack and short-term suppression effectiveness,
reduced crown fire potential and ember production,
reduced smoke impacts to communities, and increased
forest resilience (Ager et al. 2010, Stevens et al. 2016).

Fuel reduction treatments also can support cultural,
ecological, ecosystem service, and management objec-
tives beyond the WUI. For example, treatments that
restore the ecological resilience of old-growth forests and
patches with large and old trees are critical to long term
maintenance of wildlife habitats (Hessburg et al. 2020)
of seasonally dry forests and terrestrial carbon stocks,
and slowing the feedback cycle between fire and climate
change (Hurteau and North 2009). Treatments in water-
sheds that are distant from the WUI and protect munici-
pal and agricultural water supplies are critical to
minimizing high-severity fire impacts that can jeopardize

SUSAN J. PRICHARD ET AL.

Ecological Applications
Vol. 31, No. 8

clean water delivery (Bladon 2018, Hallema et al. 2018).
For example, post-fire erosion and debris flows may
cause more detrimental and longer-term impacts to
watersheds than the wildfires themselves (Jones et al.
2018, Kolden and Henson 2019).

Finally, treated areas outside the WUI can serve as
defensible positions for fire suppression personnel that
can be used to establish control lines or allow for more
flexible suppression strategies, freeing up resources to
protect WUTI infrastructure or forests in another area
(Thompson et al. 2017), or can support rapid and orga-
nized evacuation when they are implemented along evac-
uation routes (Kolden and Henson 2019). Across
complex landscapes, it is more effective in the long-term
to prioritize fuel treatments that maximize benefits
across large areas and over long time frames, rather than
constrain them to the WUI.

Can wildfires, on their own, do the work of fuel
treatments?

The use of managed wildfires and co-managing inci-
dents (e.g., suppressing in some areas, and allowing
other areas to burn) is increasingly promoted in the sci-
entific literature (Stephens et al. 2016, Moreira et al.
2020). Managed wildfires are particularly appropriate in
backcountry areas where lack of road access, steep
topography, firefighter safety concerns, or management
designations limit opportunities for active management
(Hessburg et al. 2016, Huffman et al. 2020). However, in
many cases the effects of fire exclusion on increased tree
density, layering, surface fuels, and fuel ladders are
extensive (Meyer 2015). Under these conditions, oppor-
tunities for cultural burning, prescribed burning, and
managed wildfires are limited to days with low to moder-
ate fire weather, and these windows of opportunity are
shrinking under climate change (Westerling et al. 2016).

For the past several decades, land managers have gen-
erally followed one of two strategies to respond to wild-
fires in wNA forests. First, most agencies in the United
States and Canada have followed a policy of aggressive
fire suppression, and this approach is increasingly used
in Mexico (Stephens and Fulé 2005). Under this policy,
a small fraction of fires that escape suppression (<3%)
are responsible for over 90% of area burned, based on a
1992 to 2015 reference period (Abatzoglou et al. 2018).
Second, some land managers, including those managing
national parks and wilderness areas, have designated
large, remote areas where most wildfires are allowed to
burn under moderate fire weather and fuel conditions
(Huffman et al. 2020). These are termed managed wild-
fires, with the goal of restoring more characteristic fire
regimes and landscape patterns in the context of
incident-specific objectives (Table 2).

In contrast, unplanned fires that escape suppression in
fire-excluded landscapes during extreme fire weather do
not generally restore forest resilience. Landscapes that
are consistently managed with active fire suppression
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typically have a greater area burned at higher severity
than those managed to restore more resilient fire regimes
(Stevens et al. 2017, Rodman et al. 2020). In fire-
excluded forest landscapes, forest surface and canopy
fuels tend to be highly elevated, and despite active fire
suppression, forests may eventually burn under extreme
fire weather, which is becoming more frequent as the cli-
mate warms. For example, Povak et al. (2020) found fire
severity during the 2013 Rim Fire was higher in the
Stanislaus National Forest, much of which had not
burned for >80 yr, compared to Yosemite National Park
where past burn mosaics existed. High-severity burn
patches in fires that escaped suppression are larger and
less complex than in fires managed with less aggressive
suppression tactics (Stevens et al. 2017), and seed
sources for forest regeneration are more often distant,
yielding sparse or non-existent tree regeneration (Shive
et al. 2018, Korb et al. 2019, Stevens-Rumann and Mor-
gan 2019). In dry pine and moist mixed-conifer forests,
subsequent shrub establishment can lead to a cycle of
repeated high-severity fires that perpetuates shrub domi-
nance and a potentially long-term shift in alternative
stable states (Collins et al. 2009, Cocking et al. 2014,
Coppoletta et al. 2016, Coop et al. 2020).

Where managers allow managed wildfires to burn
under prescription, burned areas are typically smaller
and have greater proportions of low- and moderate-
severity burn patches within the fire perimeter, and high-
severity patches are typically smaller (Parks et al. 2014,
Stevens et al. 2017). Within low- and moderate-severity
burn patches, fuels are reduced, and forest structures
resembling more typical historical conditions emerge
(Holden et al. 2007, Huffman et al. 2018, Stoddard
et al. 2020). In some forests, this includes characteristic
patterns of small tree clumps and interspersed openings
(Fig. 4; Kane et al. 2014, 2019, Jeronimo et al. 2019). In
fire-excluded forests, a first entry with managed wildfire
may not meet fuels reduction and management objec-
tives unless allowed to burn at a severity that modifies
stand structure (Huffman et al. 2017). Fire resilient
landscapes are generally created by burning and reburn-
ing, in which prior fires modify the spread, intensity, and
severity of subsequent fires (Prichard et al. 2017, Walker
et al. 2018, Yocom et al. 2019, Koontz et al. 2020).

Promising strategies are emerging to delineate land-
scapes into operational units where decisions about
applying managed fire can be considered before ignitions
even occur (Thompson et al. 2016, Dunn et al. 2017).
Managed wildfires are an important management tool
and they are increasingly recognized as a vital compo-
nent of adaptive management. However, relying solely
on managed wildfires to achieve management objectives
is not possible due to a number of factors that include
current restrictions on the use of managed wildfire in the
WUI or near other infrastructure, limited burn windows
with moderate fire weather, and the potential negative
consequences of allowing fire spread into nearby fire-
excluded areas with elevated fuel loads.

CLIMATE CHANGE AND WESTERN WILDFIRES
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Is the primary objective of fuel reduction treatments to
assist in future firefighting response and containment?

In a review of fuel treatment options for interior west-
ern United States forests, Reinhardt et al. (2008) recom-
mend that the central objective of fuel reduction
treatments should not be to halt fire spread or reduce
ignitions. Rather, fuel reduction treatments could be
implemented to modify fire behavior and mitigate fire
effects (Safford et al., 20124, b), thereby reinforcing the
initial resilience of the treated stand by further reducing
fuels, introducing greater heterogeneity, and allowing
firefighters to fight fires, as needed, using direct tech-
niques (Stevens et al. 2014, Kalies and Yocom Kent
2016). Under adaptive management, fuel treatments are
not designed to prevent or stop fires but to moderate fire
behavior when fire inevitably returns (Calkin et al.
2014). However, there is a frequent misconception that
fuel treatments should facilitate suppression and limit
the size of wildfires (Table 1; Cochrane et al. 2012,
Schoennagel et al. 2017).

The reasoning behind treating fuels to facilitate fire
suppression activities is circular. If fuel treatments make
suppression more successful, then wildland fuels continue
to accumulate, creating even more hazardous conditions
for the entire landscape. Inevitably, this makes subsequent
suppression more difficult, and more areas will be burned
in fewer, unmanageable events with greater ecological
consequences (Collins et al. 2010, Calkin et al. 2015).
This phenomenon has been described as “the wildland fire
paradox” (Arno and Brown 1991). Rather than creating
conditions where wildfire is easier to suppress, fuel treat-
ments designed within a restoration or climate adaptation
strategy are engineered to allow subsequent wildfires to
burn without the need of full suppression tactics and to
increase opportunities for prescribed or cultural burning.

Typical fuel reduction activities near communities
illustrate the long-term consequences of using treat-
ments with the expressed objective of suppressing
future wildfires. Near communities, fuel reduction
treatments are often explicitly implemented to create
conditions that enhance fire suppression efficacy in
both the surrounding wildland and WUI (Moghaddas
and Craggs 2007). Treatment locations are selected
based on criteria that involve community protection
(Fleeger 2008), suppression concerns (Finney 2001),
and fuel hazards (Schmidt et al. 2008), at stand and
landscape scales (Chung et al. 2013). Suppression
strategies are designed to use treated areas for burnout
operations, anchor points for fire lines, and safe zones
for firefighters. Some of the challenges associated with
this approach are that burnout operations often burn at
high severity (Backer et al. 2004), and most fire line
and safe zone construction involves the cutting of live
and dead trees and mineral soil exposure, all of which
result in conditions that can facilitate the spread of
invasive species where they are present or nearby,
degrade archaeological-heritage sites, and actually
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FiG. 4. Conceptual diagram of low and moderate severity fire effects on post-fire residual structure. Top: frequent fire reduces
surface and ladder fuels. Middle: gradual accumulation of live and dead fuels between fires. Bottom: conditions after prolonged fire
exclusion. Forest is denser and more layered, and high-severity fire is likely. Drawing credit: Robert Van Pelt.

reduce ecological resilience (Davies et al. 2010). Fur-
ther, if insufficient area is treated on a landscape, the
unexpected behavior of large wildfires will overwhelm
the ability of small fuel treatments to facilitate effective
suppression (Agee et al. 2000, Finney et al. 2001). If
fuel treatments are designed such that the next wildfire
can be allowed to burn with limited or no suppression,
then three economic and ecological objectives might be
achieved: reduced suppression costs and actions;

management of future wildfires as effective fuel treat-
ment maintenance; and favorable ecological outcomes
in areas treated before wildfire.

There is little doubt that fuel reduction treatments can
be effective at reducing fire severity and achieving cultur-
ally and ecologically beneficial effects, if designed and
implemented correctly (Stephens et al. 2009, Fulé et al.
2012). However, fuel treatments intended only for crown
fire hazard mitigation rarely constitute effective
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restoration (Stephens et al. 2020). As the pace and scale
of fuel treatments increase, emphasis on resilient forest
structure and composition, long-term reduction of sur-
face and canopy fuels, and adaptation to climate change
are critical components of treatment objectives rather
than creating conditions that are more conducive to fire
suppression (Hessburg et al. 2019).

Do fuel treatments work under extreme fire weather?

Although extreme fire behavior including strong
winds and column-driven fire spread can overwhelm
individual treatments, there is strong scientific evidence
that even under extreme weather conditions, fuel reduc-
tion treatments are effective at moderating fire severity
across a range of forest types and wildfire events. For
example, Walker et al. (2018) studied the 2011 Las Con-
chas fire in New Mexico that burned under extreme
weather and found that sites that were previously pre-
scribed burned exhibited higher conifer survival (i.e.,
lower severity fire) compared to sites that were not trea-
ted prior to the wildfire. Similarly, Yocom Kent et al.
(2015) found that moderate- and high-severity effects in
the Rodeo-Chediski Fire, which burned under extreme
fire weather, were reduced from 76% in untreated areas
to 57% in prescribed fire, and 38% in thin and burn
treatments. Likewise, Povak et al. (2020) presented evi-
dence that some treated areas experienced lower severity
fire even under the most extreme fire growth period of
the 2013 Rim Fire. Past wildfires also acted as short-
term barriers to fire spread and mitigated fire severity in
mixed-conifer forests of the interior western United
States (Parks et al. 20154, Stevens-Rumann et al. 2016).
Lastly, two studies in seasonally dry mixed-conifer for-
ests of north-central Washington State found that thin-
ning followed by prescribed burning was an effective
treatment for mitigating wildfire effects under extreme
weather conditions (Prichard and Kennedy 2014, Pri-
chard et al. 2020). Results of these observational studies
are also supported by numerous modelling studies indi-
cating that fuel treatments reduce fire intensity and
effects in dry conifer forests under dry fuels and high
wind speeds (Stephens and Moghaddas 2005, Ager et al.
2007, Vaillant et al. 2009, Johnson et al. 2011).

In forests characterized by moderate- and high-
severity fire regimes, a limited number of studies suggest
that fuel reduction treatments are ineffective at reducing
fire behavior and effects, particularly under extreme
weather conditions (e.g., Graham 2003, Martinson et al.
2003, Schoennagel et al. 2004). The rationale is that fires
burning within moist and cold forest patches are gener-
ally controlled by climate (i.e., a warmer and drier than
average year) and not controlled by fuel within patches
(Turner and Romme 1994, Bessie and Johnson 1995).
However, at larger spatial scales, there is strong evidence
that patchwork burn mosaics resulting from reburns
reduce landscape contagion, and consequently, spread
and severity of wildfires, even under extreme fire weather
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(Stine et al. 2014, Parks et al. 20155, Hessburg et al.
2016, Spies et al. 2018).

Dependent on the forest type and environmental
setting, some fuel treatments are more effective at
reducing adverse fire effects than others, and this can
also contribute to confusion as to whether or not
treatments are effective under extreme fire weather.
Several studies highlight that the most effective fuel
treatments include coupled thinning and burning
(Kalies and Yocom Kent 2016), and emphasize the
importance of retaining large, fire-resistant trees in
dry mixed conifer forests (DellaSala et al. 2004, Agee
and Skinner 2005, Stephens et al. 2009). Furthermore,
other studies showed that fire severity decreased as
wildfires progress further into areas with more treated
area (Arkle et al. 2012, Kennedy and Johnson 2014),
strongly suggesting that small fuel treatments or those
with large perimeter-to-edge ratios are less effective
than larger treatments under extreme fire weather con-
ditions (Kennedy et al. 2019).

Finally, fuel treatments generally are designed to miti-
gate wildfire intensity and effects but they are not neces-
sarily intended to impede fire spread or reduce fire size
(Reinhardt et al. 2008). Consequently, when fires burn
large areas under extreme fire weather some may con-
clude that burned-over fuel treatments were ineffective
(e.g., Schoennagel et al. 2017). However, the occurrence
of large fires does not necessarily suggest that existing
fuel treatments were unsuccessful. Large fires have
always been a part of fire-prone forests, and within large
fire events fuel treatments can allow fires to continue
burning but mitigate fire severity and enhance the
heterogeneity of fire effects.

Is the scale of the problem too great? Can we ever
catch up?

Recent meta-analyses of fuel treatment effectiveness
demonstrate that at landscape and regional scales, fuel
treatments account for only a small fraction ("1%) of the
area burned by wildfires (e.g., Barnett et al. 20164, Kol-
den 2019). Therefore, there is some concern that treat-
ments are ineffective because under current prescription
levels, wildfires may not actually encounter treated areas
during the duration of their potential effectiveness
(Odion and Hanson 2006, Rhodes and Baker 2008).
While this is factually accurate at the current pace and
scale of treatment in wNA, the question is not whether
every wildfire can be impacted by fuels treatments, but
whether treatments can be strategically used to multiply
their benefits and promote greater opportunities for
applying wildland fire across landscapes. The scientific
evidence that fuel reduction treatments can mitigate fire
behavior and effects strongly supports a conclusion that
expanding treated areas, including the use of forest thin-
ning, prescribed burning, cultural burning, and managed
wildfires, will lead to greater landscape resilience to
future wildfires.
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Ongoing warming and drying are linked to increasing
large fire occurrence, contributing to large increases in
area burned (Abatzoglou and Williams 2016) and area
burned as high severity (Parks and Abatzoglou 2020) in
wNA in recent decades. Given projected increases in
warming due to climate change, burn probability is
increasing in many wNA forests (Littell et al. 2018, Hur-
teau et al. 2019) along with increasing likelihood that
future wildfires will impact a larger proportion of land-
scapes. In this light, the current pace and scale of fuels
treatments is insufficient to address the scale of fire
exclusion. Furthermore, treated areas require ongoing
maintenance to retain efficacy (Krofcheck et al. 2017,
Vaillant and Reinhardt 2017), making it difficult to
expand treated areas across a landscape without signifi-
cant additional financial and personnel investments
(North et al. 2015a). Thus, the scope, scale, and urgency
of adapting wNA forests to climate change and future
wildfires is immense.

Given the complexity of forest ecosystems, the eco-
nomic and personnel investment required, and the policy
and management constraints, there is no single manage-
ment tool that is adequate to increase the resilience of
wNA landscapes to future wildfires. Coupled thinning
and burning treatments will be especially helpful in dry
pine, oak woodlands, and dry mixed conifer forests,
while restoration of more characteristic forest succes-
sional and nonforest patchworks using managed moder-
ate and high severity wildfires will be key in cold forests.
Forest managers in western Australia have reduced the
frequency of large and severe wildfires, but only after
building extensive landscape networks of strategic treat-
ments (i.e., spatially linked naturally occurring and trea-
ted areas of reduced fuels prior to the outbreak of
wildfires) and by conducting frequent prescribed burn-
ing under moderate fire weather and including Indige-
nous fire use over large areas (Boer et al. 2009,
Sneeuwjagt et al. 2013). Similar approaches are being
used in U.S. national forest, wilderness, and park areas
to allow for more area of managed wildfires (Table 2).
Given limitations on where mechanical thinning, pre-
scribed and cultural burning, and managed wildfire are
practical or allowed, combining these tools over broad
areas can markedly expand treatment extent and reduce
impact of large wildfires.

Fire hazard, burn probability, and fire ecology vary
widely across wNA forest landscapes. Prior knowledge
of cultural burning practices, ignition and weather pat-
terns, vegetation and fuel distributions, and topography
all provide critical information for prioritizing fuel treat-
ments in areas with the highest risk of burning (Ager
et al. 2010, 2016). Near population centers, humans are
often responsible for the majority of wildfire ignitions,
and they provide ignition sources in highly predictable
areas and seasons of the year, when natural ignitions are
rare (Balch et al. 2017, Keeley and Syphard 2018). Igni-
tion pattern and frequency interact with fuels, weather,
and topography to influence fire occurrence, leading to
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heterogeneous burn probabilities across a landscape
(Ager et al. 2012, Povak et al. 2018). Using prior knowl-
edge of human and lighting-caused fire starts coupled
with knowledge of the probability of fire spread and
likely severity, managers can identify the areas of any
landscape where uncharacteristic or impactful fires will
likely occur (Parisien and Moritz 2009, Parisien et al.
2012), and decrease the proportion of the landscape that
requires treatment.

There are a number of available tools and approaches
to identify areas that would benefit from strategically
placed fuel treatments. In general, fuel treatments are
not implemented at random, and for good reason (Fin-
ney et al. 2007). A comparison of random vs. strategi-
cally placed treatments showed that a significant
reduction in area could be achieved with strategic place-
ment (Ager et al. 2013, 2016), where that opportunity
exists. Quantifying the probability of high-severity wild-
fire across a given landscape and focusing thinning treat-
ments on high-probability areas can decrease the
required treatment area by >50% (Krofcheck et al.
2019). However, the success of these strategies depends
on maintaining the treatments and reintroducing fire to
a larger portion of the landscape (Agee and Skinner
2005, Barros et al. 2018). Where reserved areas are
abundant or widely distributed, opportunities for spa-
tially optimizing fuel treatments are limited, and consid-
erably more treated area may be required outside of
reserves (Finney et al. 2007).

In summary, justifying inaction based on the scale of
the problem is too large is highly circular. Evidence sup-
ports increasing the pace of treatments to significantly
reduce the area impacted by uncharacteristic wildfire,
even under a changing climate (Liang et al. 2018). For
example, managers can expand areas where burn pre-
scriptions are applied to reduce fuels and increase forest
heterogeneity (Safford et al. 2012a,b, Striplin et al.
2020). The efficacy of these was historically demon-
strated by Indigenous burning practices that amplified
natural lightning ignitions in many seasonally dry for-
ests, thereby modifying active fire regimes and fire
effects, and diversifying the seasonality and frequency of
fires (Crawford et al. 2015, Trauernicht et al. 2015, Tay-
lor et al. 2016). Managed wildfires can also increase for-
est and fuel heterogeneity, constraining subsequent fire
size and severity (Collins et al. 2009, Parks et al. 20155,
Barros et al. 2018). When used in conjunction with
mechanical treatments and prescribed or cultural burn-
ing, managed wildfire presents an opportunity to
increase the effectiveness of treatments across large land-
scapes (North et al. 2012).

Will planting more trees in wNA forests help to mitigate
climate change?

Tree plantations have long been a debated aspect of
forest management, and more recently, climate change
mitigation (Alig 1997, Chmura et al. 2011). Planting
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after harvest to increase forest productivity were the cen-
tral justifications for past clearcut logging, even as a
growing body of science demonstrated that plantations
(1) did not provide the needed ecological structures or
functional diversity of old-growth forests, (2) were not
necessarily more productive than mature forests (Frank-
lin et al. 2002), and (3) without surface fuel treatment,
could be conducive to high-severity wildfires (Thompson
et al. 2007). Similarly, planting seedlings after post-fire
salvage logging is sometimes used to expedite tree regen-
eration following high-severity fire. Without strategic
management, post-fire plantations may be overstocked,
dominated by a single species (North et al. 2019), lack
tree clumping and canopy gaps, and pose significant
wildfire hazard (Kobziar et al. 2009), particularly with-
out post-harvest slash reduction (Donato et al. 2009).

A recent proposal to combat climate change includes
planting a trillion trees globally, including substantial
reforestation in the western United States (Bastin et al.
2019). The study suggested that these additional trees
would sequester sufficient atmospheric carbon to curb
climate change. Baseline assumptions and findings from
this study have been contested by scientists (Veldman
et al. 2019, Holl and Brancalion 2020) as the study
failed to account for forest interactions with climate,
drought, and wildfire dynamics. In addition to future
disturbance resilience, numerous other barriers currently
impede large-scale reforestation efforts (Fargione et al.
2021).

Across wNA, most of the forest carbon is captured in
moist temperate forests with high precipitation levels
and net primary productivity, including the coastal
ranges along the Pacific Coast, western Cascade and
western Sierra Nevada Mountain Ranges (Hudiburg
et al. 2009). These forests possess complex, heteroge-
neous structures, some of which developed with infre-
quent wildfires. Others, including those in southwestern
Oregon and northern California, were also influenced by
a long legacy of Indigenous burning (Anderson 2013,
Merschel et al. 2014). Because most of the standing bio-
mass in high productivity wNA forests occurs in live
trees, when these forests burn, relatively low levels of car-
bon are initially emitted, with most of the biomass
retained either in standing trees and snags or to newly
downed heavy fuels that slowly release carbon to the
atmosphere through decomposition, unless they subse-
quently burn in a reburn fire event (Stenzel et al. 2019,
Lutz et al. 2020). By contrast, even-aged stands, both
naturally occurring (e.g., lodgepole pine forests) and in
young plantations, are relatively homogeneous in struc-
ture, and with elevated surface fuels, can facilitate high-
intensity, severe fire (Bowman et al. 2019). Climate
change-induced shortening of fire return intervals may
ultimately convert some of these live carbon pools from
sinks to sources (Turner et al. 2019, Foster et al. 2020).

In fire-adapted dry mixed conifer forests, dense tree
plantations are highly susceptible to future wildfires and
drought. However, a promising approach to retaining

CLIMATE CHANGE AND WESTERN WILDFIRES

Article €02433; page 19

and sequestering carbon in dry, fire-prone forests is to
retain existing large-diameter trees and restore charac-
teristic low-severity fire to maintain low-severity fire to
maintain resilient forest structure and composition
(Hurteau and North 2009). It is still debatable whether
prescribed burning and removal of small diameter trees
and ladder fuels will actually increase or decrease above-
ground carbon stores (Campbell et al. 2012, Restaino
and Peterson 2013) and is likely site dependent, but there
is broad scientific agreement that these management
actions are key to increasing forest ecological resilience,
which ultimately stabilizes forest carbon stocks (Hurteau
et al. 2019, Krofcheck et al. 2019, Westlind and Kerns
2021). Managed landscape mosaics will be particularly
critical to maintaining legacy old-growth forests and
minimizing sink-to-source conversions due to fire and
other disturbances (Barbero et al. 2015, Liang et al.
2017). Finally, governmental cap-and-trade and carbon
taxation programs must accurately account for the com-
plex role fire plays in carbon cycle feedbacks and carbon
maintenance, rather than simply characterizing fire as a
net carbon loss (Hurteau et al. 2008, North et al. 2009).

Across wNA forests, tree planting can serve as an
important tool to nudge the trajectory of post-fire land-
scapes towards more climate-adapted tree species or
genotypes, particularly in areas where seed source is lim-
ited (North et al. 2019). However, traditional high den-
sity plantations will often predispose forests to high-
severity fire where pre-commercial thinning and associ-
ated fuel treatments are not implemented, which is
increasingly the case (McCarley et al. 2017). Alterna-
tives to traditional plantations are emerging that are
designed to promote resilience to future fire and drought
from the beginning of the planting process. These
include planting drought-conditioned seedlings reared
from lower-elevation seed stock, planting discontinuous
“founder stands” or “nucleation islands” of trees into
portions of stand-replacing patches far from tree refugia,
and planning for the reintroduction of fire into younger
planted stands as they develop (Peterson et al. 2007,
Landis et al. 2011).

Is post-fire management needed or even ecologically
Justified?

Many contemporary wildfires exhibit a range of post-
fire effects (Thode et al. 2011); variable sized patches of
stand-replacing or partial stand replacing fire are
embedded within a matrix of live forest (Stevens et al.
2017). Among large fires, these patches of stand-
replacing fire may themselves contain isolated and vari-
ably sized patches of live trees often referred to as fire
refugia (Meddens et al. 2018, Krawchuk et al. 2020).
Thus, the post-fire landscape can be viewed as a complex
patchwork of interconnected surviving forest, the pro-
duct of low and moderate severity fires, high-severity
patches, and isolated refugia (Coop et al. 2019). How-
ever, these post-fire landscapes are not necessarily on
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resilient trajectories. Fire refugia may be in uncharacter-
istic locations, and active forest and fuels management
are often required after the fire to promote future forest
resilience to disturbance and climate change and to pro-
tect valued cultural resources.

Patches of low- and moderate-severity fire generally
have short-term resistance to future fire due to the
reduction of surface fuels from the first burn (Prichard
et al. 2017). Compared to low-severity fire, moderate-
severity fire events can create a residual stand structure
that more closely approximates historical conditions
(Collins et al. 2011, Huffman et al. 2017). However,
moderate-severity fires that burn through previously
dense forest also leave considerable standing and down
wood, which can lead to elevated fuel loads and high-
severity fire in subsequent reburns (Collins et al. 2018).
Thus, post-fire fuel reduction of the trees that
encroached during the period of fire exclusion can be
warranted to improve the fire resilience of residual for-
ests, including fire refugia.

Smaller refugial patches within larger burned patches
are increasingly recognized as having significant cultural
and ecological value by preserving biological and cul-
tural legacies that can contribute to forest succession via
seed dispersal (Johnstone et al. 2016, Meddens et al.
2018). Small refugia in particular make disproportionate
contributions to reforestation potential within larger
patches of stand-replacing fire (Shive et al. 2018, Coop
et al. 2019). However, isolated tree refugia can have a
significant standing and down fuel component around
their edges due to adjacent high-severity burn effects
(Lydersen et al. 20194). Given their outsized importance
as biological legacies, surface fuel reduction to “harden”
the edges of refugia may be critical to their future resili-
ence and prioritize refugia retention during wildland
firefighting operations (Meddens et al. 2018).

Large patches of stand-replacing fire are an increasing
focus of research (Coop et al. 2020). Independent of
subsequent fire dynamics, regeneration is challenged by
seed dispersal limitations and a warming -climate
(Stevens-Rumann and Morgan 2019). Fuel conditions in
large patches of stand-replacing fire are usually domi-
nated by coarse wood, regenerating shrubs, and hard-
woods, increasing the risk of subsequent high-severity,
and occurrence of long-duration re-burns (Coppoletta
et al. 2016, Prichard et al. 2017). Collectively, these con-
ditions pose a substantial management challenge if the
objective is to restore at least a portion of large burn
patches to conifer forest, as this is unlikely over decades
to centuries without management intervention (Coop
et al. 2020).

Fuels management and regeneration dynamics in
stand-replacing patches are closely related. In high-
severity patches, management to reduce coarse wood
accumulations and flammable shrubs may promote post-
fire tree regeneration and mitigate future fire severity
(Peterson et al. 2015, Lydersen et al. 20195). In planted
forests, coarse wood presents a different challenge, as
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downed logs facilitate seedling survival through shading
and moisture retention (Castro et al. 2011) but pose a risk
to seedlings if they burn (Peterson et al. 2015). Under-
standing the range and variability of historical reburning
would provide essential guidance of restoration targets to
improve the post-fire resilience of regenerating land-
scapes.

Strategic tree planting can be used to encourage the
re-establishment of some post-fire landscapes and for
climate change adaptation, particularly where condi-
tions are not favorable to natural regeneration (see pre-
vious question). Post-fire mechanical thinning (e.g.,
salvage logging) is often driven by economic and safety
considerations but may have some ecological benefits in
terms of reduced future surface fuel loads and fire haz-
ard 10-20 yr post-fire (Peterson et al. 2015). Future
research in this area is warranted to investigate the
impacts of variable density harvests and how potential
ecological tradeoffs vary over time (e.g., Ritchie et al.
2013).

CONCLUSIONS

During this time of rapid environmental change, the
impacts of climatic changes on forests and their associ-
ated fire regimes cannot be overstated. In addition to the
increased incidence of large wildfires, tree mortality asso-
ciated with persistent drought and die-off events, chronic
forest insect outbreaks, and increasingly common tree
regeneration failures are all critical management consider-
ations (Stephens et al. 2016, Coop et al. 2020). In a
majority of cases, forest management and fuel reduction
treatments will not return landscapes to any historical
condition or fire regime, nor is that a particularly useful
premise on which to base adaptive forest management
(Allen et al. 2011, Hanberry et al. 2015, Falk et al. 2019).
Instead, intentional management focused on adapting
current forest conditions to a rapidly evolving future cli-
mate is needed. Adaptations can foster forest resilience to
longer, warmer, drier, and windier fire seasons, increasing
incidence of episodic, multi-year to decadal droughts, and
increasing dominance of severe wildfire and insect distur-
bances. Given the rapid increase in human-caused large
wildfires, mitigating unplanned human ignitions is
another critical wildland fire management issue (Balch
et al. 2017), that by itself can reshape wildfire and forest
landscape futures.

Although the management situation for wNA forests
is daunting, our review of the scientific literature offers
clear guidance. In seasonally dry wNA forests that were
historically dominated by fire-resistant species, restoring
open, fire-tolerant canopy structure and composition,
favoring larger tree sizes, and reducing surface fuels can
effectively mitigate subsequent wildfire and stabilize car-
bon stocks (Fig. 1). In many instances, these adaptation
actions, with ongoing maintenance, will also enable
future wildfire events to continually reinforce resilient
structure, composition, and fuels.
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Ecological departures associated with fire exclusion
are not confined to seasonally dry pine and mixed-
conifer forests. Across a wide range of wNA forests,
landscape-level treatment prescriptions that promote
resilient patchworks with heterogeneous nonforest and
forest ages can reduce the extent of high-severity wild-
fires and make landscapes less susceptible to extensive
insect and disease outbreaks. Restoration of fire resilient
mosaics in moist mixed-conifer forests, mixed conifer-
hardwood forests, fire-prone deciduous forests (e.g.,
aspen), and cold forests is also needed.

Despite calls to restore fire as a cultural and ecological
process (e.g., The U.S. National Wildland Fire Cohesive
Strategy), the dominant approach to wildfire manage-
ment continues to be aggressive suppression. Response
to unplanned fire starts is highly successful in the United
States and Canada and is becoming increasingly com-
mon in Mexico. However, a small fraction of fires that
escape suppression (2-3%) generally burn under extreme
fire weather conditions, lead to explosive fire growth,
and account for >90% of annual area burned (Abat-
zoglou et al. 2018). The strategy to actively suppress fire
is a highly consequential active management prescrip-
tion, with surface and canopy fuel accumulation as a
consequence. Continued forest infilling and fuel accumu-
lation predisposes forests to high-severity fire when fire
inevitably returns (North et al. 2015b).

Not surprisingly, recommendations to increase wNA for-
est resilience to climate change and wildfires are in close
alignment with Indigenous knowledge, cultural resource val-
ues, and desired land management strategies (Kimmerer
and Lake 2001, Lake et al. 2018, Roos et al. 2021). Over
millennia, Indigenous burning practices influenced fire
regimes, which contributed to the resilient composition and
structure of many historical wNA forest and nonforest
ecosystems. Although European colonization severely cur-
tailed and displaced Indigenous land management (Lake
et al. 2017, Lake and Christianson 2019), Indigenous
knowledge for the maintenance of fire-dependent ecosys-
tems and services endures (Huffman 2013). Given the urgent
need for adaptive forest management in the 21%-century, an
intentional merging of Indigenous and western knowledge is
needed to guide future forest conditions and restore active
fire regimes to wNA forests.
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